PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 57 | 3 |

Tytuł artykułu

Biodegradation of carbendazim by epiphytic and neustonic bacteria of eutrophic Chelmzynskie Lake

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper presents a study on biodegradation of carbendazim (1 mg/l) by homogeneous cultures of epiphytic (n = 25) and neustonic (n = 25) bacteria and heterogeneous (n= 1) cultures containing a mixture of 25 bacterial strains isolated from epidermis of the Common Reed (Phragmites australis, (Cav.) Trin. ex Steud.) and surface microlayer (SM ≈ 250 μm) of eutrophic lake Chelmzynskie. Results indicate that epiphytic bacteria are characterized by higher average capacity to decompose carbendazim than neustonic bacteria (p<0.05). The half-life of carbendazim in epiphytic bacterial cultures equaled an average of 60 days. In the same period, neustonic bacteria reduced the concentration of the fungicide by 31 %. The level of carbendazim biodegradation in mixed cultures of epiphytic and neustonic bacteria after 20-day incubation was lower than the biodegradation level in homogeneous cultures. Sixty-day homogeneous cultures of epiphytic and neustonic bacteria were characterized by a higher mean level of carbendazim biodegradation than mixed cultures. After 40-day incubation, mean values of biodegradation of the fungicide in homogeneous and mixed cultures were similar. It was demonstrated that among epiphytic bacteria, Pseutlomonas luteola was the most efficient organism in reducing the concentration of carbendazim. Among neustonic bacteria, Burkholderia cepacia and Aeromonas hydrophila were the most effective in degradation of the fungicide.

Wydawca

-

Rocznik

Tom

57

Numer

3

Opis fizyczny

p.221-230,fig.,ref.

Twórcy

  • Nicolaus Copernicus University, Gagarina 9, 87-100 Torun, Poland
autor
autor

Bibliografia

  • Barathi S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ. Int. 26: 413-416.
  • Bhushan B., A. Chauhan, S.K. Samanta and R.K. Jain. 2000. Kinetics of biodegradation of p-nitrophenol by different bacteria. Bioch. Biophis. Res. Communic. 274: 626-630.
  • Biddanda B.A. and R. Benner. 1997. Major contribution from mesopelagic plankton to heterotrophic metabolism in upper ocean. Deap-Sea Res. 44: 2069-2085.
  • Biziuk M., A. Przyjazny, J. Czerwiński and M. Wiergawski. 1996. Occurrence and determination of pesticides in natural and treated waters. J. Chromatography A 745: 103-123.
  • Chen K.-H., J.-Y. Wu, D.-J. Liou and SZ.-CH. J. Hwang. 2003. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101: 57-68 .
  • Chiba M. and D.F. Veres. 1980. HPLC method for simultaneous determination of residual benomyl and methyl-2-benzimidazole carbamate in apple foliage without cleanup. J. Assoc. Off. Anal. Chem. 63: 1291-1295.
  • Culliney T.W., D. Pimentel and M.H. Pimentel. 1992. Pesticides and natural toxicants in food. Agric. Ecosyst. Environ. 41: 297-320.
  • Cuppen J.G.M., P.J. van der Brink, E. Camps, K.F. Uil and T.C.M. Brock. 2000. Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates. Aquat. Toxicol. 48: 233-250.
  • Daubner I. 1967. Microbiologia Vody. Slov. Akad. Vied. Bratislava.
  • Daubras D.L., C.E. Danganan, A. Hubner, R.W. Ye, W. Hendrickson and A.M. Chakrabarty. 1996. biodegradation of 2,4,5-trichlorophenoxyacetoc acid by Burkholderia cepacia strain AC1100: evolutionary insight. Gene 179: 1-17.
  • Dilek F.B., G.K. Anderson and J. Bloor. 1996. Investigation into the microbiology of the rate jet-loop activated sludge reactor treating brewery wastewater. Wat. Sci. Tech. 43: 107-112.
  • Donderski W. and E. Strzelczyk. 1992. The ecology and physiology of aerobic heterotrophic bacteria in lakes of different trophy. In: R. Bohr, A. Nienartowicz, and J. Wilkoń-Michalska (eds), Some Ecological Biological Systems in North Poland, Nicolaus Copernicus University Press, Toruń.
  • Ferrer E.B., E.M. Stapert and W.T. Sokolski. 1963. A medium for improved recovery of bacteria from water. Can. J. Microbiol. 9: 420-422.
  • Fuchs A. and F.W. de Vries. 1978. Bacterial breakdown of benomyl. I. Pure cultures. Antonie van Leeuwenhoek A4: 283-292.
  • Garabetian F., J.C. Romano and R. Paul. 1993. Organic matter composition and pollutant enrichment of sea surface microlayer inside and outside slicks. Mar. Environ. Res. 35: 323-339.
  • Garret W.D. 1965. Collection of slick - forming materials from sea surface. Limnol. Oceanogr. 10: 602-605.
  • Gianfreda L. and M.A. Rao. 2004. Potential of extracellular enzymes in remediation of polluted soils - a review. Enzyme Microb. Technol. 35: 339-354.
  • Griffith P.C. and L.R. Pomeroy. 1995. Seasonal and spatial variations in pelagic community respiration on the south-eastern U.S. continental shelf. Cont. Shelf Res. 15: 815-825.
  • Hardy J.T. 1982. The sea-surface microlayer: Biology, chemistry, and anthropogenic enrichment. Prog. Oceanogr. 11: 307-328.
  • Hayes W.J. 1991. Dosage and other factors influencing toxicity, pp. 39-105. In: W.J. Hayes and E.R. Laws (eds), Handbook of Pesticide Toxicology, Academic Press, San Diego, C.A.
  • Helweg A. 1977. Degradation and adsorption of carbendazim and 2-aminobenzimidazole in soil. Pestic. Sci. 8: 71-78.
  • Holtman M.A. and D.Y. Kobayashi. 1997. Identification of Rhodococcus erythropolis isolates capable of degrading the fungicide carbendazim. Appl. Microbiol. Biotechnol. 47: 578-582.
  • Juhasz A.L., M.L. Britz and G.A. Stanley. 1997. Degradation of benso(a)pyrene, dibenz(a,h)anthracene and coronene by Burkholderia cepacia. Wat. Sci. Tech. 36: 45- 54.
  • Jung K.-J., E. Kim, J.-S. So and S.-CH. Koh. 2001. Specific biodegradation of polychlorinated biphenyls (PCBs) facilitated by plant terpenoids. Biotechnol. Bioproc. Eng. 6: 61-66.
  • Kiigemagi U., R.D. Inman, W.M. Mellenthin and M.L. Deinzer. 1991. Residues of benomyl (determined as carbendazim) and captan in postharvest-treated pears in cold storage. J. Agric. Food Chem. 39: 40-403.
  • Kim T.J., E.Y. Lee, Y.J. Kim, K.-S. Cho and H.W. Ryu. 2003. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J. Microb. Biot. 19: 411-417.
  • Lalke-Porczyk E. and W. Donderski. 2001. Metabolic activity of epiphytic bacteria inhabiting the common reed (Phragmites australis (Cav.) Trin. Ex Steudel) in Moty Bay of Jeziorak Lake. Pol. J. Environ. Stud. 6: 443-450.
  • LeBlanc G.A. 1995. Are environmental sentinels signalling? Environ. Health Perspect. 103: 888-890.
  • Maki J. and R. Herwig. 1991. A diel study of neuston and plankton bacteria in Antarctic ponds. Antarc. Sci. 3: 47-51.
  • Manadori L., A. Gambaro, R. Piazza, S. Ferrari, A.M. Stortini, I. Moret and G. Capotaglio. 2006. PCBs and PAHs in sea-surface microlayer and sub-surface water samples of the Venice Lagoon (Italy). Mar. Pollut. Bull. 52: 184-192.
  • Mazellier P., E. Leroy and B. Legube. 2002. Photochemical behavior of fungicide carbendazim in dilute aqueous solution. J. Photochem. Photobiol. A: Chemistry 153: 221-227.
  • Mudryk Z. 1998. Generic composition and metabolic activity of bacteria inhabiting surface seawater layers. Oceanol. Stud. 3: 57-70.
  • Nakai M., B.J. Moore and R.A. Hess. 1993. Epithelial reorganization and irregular growth following carbndazim - induced injury of the efferent ductules of the rat testis. Anat. Rec. 235: 51-60.
  • Norkrans B. 1980. Surface microlayers in aquatic environments, pp. 51-83. In: M. Alexander (ed), Advances in Microbial Ecology, Plenum Press, New York and London.
  • Pattanasupong A., H. Nagase, M. Inoue, K. Hirata, K. Tani, M. Nasu and K. Iyamoto. 2004. Ability of a microbial consortium to remove pesticide, carbendazim and 2,4-dichlorophenoxy-acetic acid. World J. Microbiol. Biotechnol. 20: 517-522.
  • Pemberton J.M., S.P. Kidd and R. Schmidt. 1997. Secreted enzymes of Aeromonas. FEMS Microbiol. Lett. 152: 1-9.
  • Perreault S.D., S. Jeffay, P. Poss and J.W. Laskey. 1992. Use of the fungicide carbendazim as a model compound to determine the impact of acute chemical exposure during oocyte maturation and fertilization on pregnancy outcome in the hamster. Toxicol. Appl. Pharmacol. 114: 225-231.
  • Plimmer I.R. 1990. Pesticide loss to atomosphere. Amer. I. Indust. Med. 18: 461-466.
  • Sarrif A.M., G.T. Arce, D.F. Krahn, R.M. O'Neil and V.L. Reynolds. 1994. Evaluation of carbendazim in the presence of some normal soil consituents with photodiode - array detection. J. Chromatogr. 538: 480-483.
  • Soroka Y.M., L.S. Samoilenko and P.I. Gvozdyak. 2001. Strains of Pseudomonas fluorescens 3 and Atrhrobacter sp. 2 degrading polycyclic aromatic hydrocarbons. Microbiol. Zh. 63: 65-70.
  • Southwood J.M., D.C.G. Muir and D. Mackay. 1999. Modelling agrochemical dissipation in surface microlayers following aerial deposition. Chemosphere 38: 121-141.
  • Strzelczyk E. and A. Mielczarek. 1971. Comparative studies on metabolic activity of planktonic, benthic and epiphytic bacteria. Hydrobiologia 38: 67-77.
  • Szewczyk U., R. Szewczyk, W. Manz and K.H. Schleifer. 2000. Microbial safety of drinking water. Annu. Rev. Microbiol. 54: 81-127.
  • Wania F., J. Axelman and D. Broman. 1998. A review of processed involved in exchange of persistence organic pollutants across the air-sea interface. Environ. Pollut. 102: 3-23.
  • Warren N., I.J. Allan, J.E. Carter, W.A. House and A. Parker. 2003. Pesticides and other micro-organic contaminants in freshwater sedimentary environments - a review. Appl. Geochem. 18: 159-164.
  • WHO. 1993 - Environment Health Criteria 149: Carbendazim - Geneva: World Health Organization, (http://www.inchem.org/ documents/ehc/ehc/ehc149.htm, viewing date: May 01.2007).
  • Williams P.M., A.F. Carlucci, S.M. Henrichs, E.S. Vleet, S.G. Horrigan, F.M. Reid and K.J. Robertson. 1986. Chemical and microbiological studies of surface film in the southern Gulf of California and off the west coast of Baja California. Mar. Chem. 19: 17-98.
  • Wurl O. and J.P. Obbard. 2005. Chlorinated pesticides and PCBs in the sea-surface microlayer and seawater samples of Singapore. Mar. Pollut. Bull. 50: 1233-1243.
  • Zhang G.SH., X.M. Jia, T.F. Cheng, X.H. Ma and Y.H. Zhao. 2005. Isolation and characterization of new carbendazim - degrading Ralstonia sp. strain. World J. Microb. Biotechnol. 21: 256-269.
  • Zipper Ch., K. Nickel, W. Angst and H.P. Kohler. 1996. Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(chloro-2-methylphenoxy) propionic acid] in an enantioselective manner by Sphingomonas herhicidovorans sp. nov. Appl. Environ. Microb. 12: 4318-4322.
  • http://agrochemchina.com/carbendazim.htm, viewing date: May 01.2007.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-d43ee3e7-08b3-41c5-9251-34d9813e492c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.