PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 3 |

Tytuł artykułu

Biologically active peptides derived from proteins - a review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Proteins play an important role in body functioning. They can also be a good source of peptides with different activities. Such peptides are defined as biologically active (bioactive peptides). Bioactive peptides interact with proper body receptors and such an effect can be beneficial or not. Biopeptides as components of food with desired features have become an interesting issue for scientific research. Many of bioactive peptides are found in milk and dairy products, plant, animal and microbial proteins. They function mainly as inhibitors of the angiotensin converting enzyme but there is a plenty of peptides derived from other sources that can even prevent chronic diseases. This paper focuses on peptides derived from different sources and their physiological role in the body as well as functional aspects of their application in food production. In this article we concentrate on the peptides exerting the following activities: affecting blood pressure, prolyl endopeptidase inhibitors, coeliac toxic, immunomodulating and opioid.

Wydawca

-

Rocznik

Tom

58

Numer

3

Opis fizyczny

p.289-294,ref.

Twórcy

autor
  • University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-726 Olsztyn-Kortowo, Poland

Bibliografia

  • 1. Arai S., Studies on functional foods in Japan – State of the art. Biosci. Biotech. Biochem., 1996, 60, 9–15.
  • 2. Arihara K., Nakashima Y., Mukai T., Ishikawa S., Itoh M., Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine muscle proteins. Meat Sci., 2001, 57, 319–324.
  • 3. Ariyoshi Y., Angiotensin- converting enzyme inhibitors derived from food proteins. Trends Food Sci. Technol., 1993, 4, 139–144.
  • 4. Brantl V., Teschemacher H., Henschen A., Lottspeich F., Blasig J., Opioid activities of β-casomorphins. Life Sci., 1981, 28, 1903–1909.
  • 5. Calvo C.F., Cesselin F., Gelman M., Glowinski J., Identification of an opioid peptide secreted by rat embryonic mixed brain cells as a promoter of macrophage migration. Eur. J. Neurosci., 2000, 12, 2676–2684.
  • 6. Chiba H., Yoshikawa M., Biologically active peptides from food proteins: new opioid peptides from milk proteins. 1986, in: Protein Tailoring for Food and Medical Uses (eds. R.E. Feeney, J.R. Whitaker). Marcel Dekker, New York, pp. 123–153.
  • 7. Cornell H.J., Amino acid composition of peptides remaining after in vitro digestion of a gliadin subfraction with duodenal mucosa from patients with coeliac disease. Clin. Chim. Acta, 1988, 176, 277–290.
  • 8. Cornell H.J., Skerrit J.H., Puy R., Javadpour M., Studies of in vitro γ-interferon production in coeliac disease as a response to gliadin peptides. Biochim. Biophys. Acta, 1994, 1226, 126–130.
  • 9. Cornell H.J., Coeliac disease: a review of the causative agents and their possible mechanisms of action. Amino Acids, 1996, 10, 1–19.
  • 10. Cunningham D.F., O’Connor B., Proline specific peptidases. Biochim. Biophys. Acta., 1997, 1343, 160–186.
  • 11. De Ritis G., Auricchio S., Jones H.W., Lew E.J., Bernardin J.E., Kasarda D.D., In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in coeliac disease. Gastroenterology, 1988, 94, 41–9.
  • 12. Dziuba J., Iwaniak A., Database of bioactive peptide sequences. 2006, in: Nutraceutical Proteins and Peptides in Health and Disease (eds. Y. Mine, F. Shahidi). CRC Press Taylor & Francis, Boca Raton-London-New York, pp. 543–564.
  • 13. Dziuba J., Iwaniak A., Minkiewicz P., Computer-aided characteristics of proteins as potential precursors of bioactive peptides. Polimery, 2003, 48, 1, 50–53.
  • 14. Dziuba J., Minkiewicz P., Nałęcz D., Biologically active peptides from plant and animal proteins. Pol. J. Food Nutr. Sci., 1999a, 8/49, 13–16.
  • 15. Dziuba J., Minkiewicz P., Plitnik K., Chicken meat proteins as potential precursors of bioactive peptides. Pol. J. Food Nutr. Sci., 1996, 5/46, 4 85–95.
  • 16. Dziuba J., Minkiewicz P., Nałęcz D., Iwaniak A., Database of biologically active peptide sequences. Nahrung, 1999b, 43, 3, 190–195.
  • 17. Dziuba J., Niklewicz M., Iwaniak A., Darewicz M., Minkiewicz P., Bioinformatic-aided prediction for release possibilities of bioactive peptides from plant proteins. Acta Alim. Hungarica, 2004, 33, 3, 227–235.
  • 18. Fukudome S., Yoshikawa M., Opioid peptides from wheat gluten: their isolation and characterisation. FEBS Lett., 1992, 296, 107–111.
  • 19. Fukudome S., Jinsmaa Y., Matsukawa T., Sasaki R., Yoshikawa M., Release of opioid peptides, gluten exorphins by the action of pancreatic elastase. FEBS Lett., 1997, 412, 475–479.
  • 20. García-Horsman J.A., Männistö P.T., Venäläinen J.I., On the role of prolyl oligopeptidase in health and disease. Neuropeptides, 2007, 41, 1–24.
  • 21. Gobetti M., Ferranti P., Smacchi E., Goffredi F., Addeo F., Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii ssp. bulgaricus SS1 and Lactococcus lactis ssp. cremoris FT4. Appl. Environ. Microbiol., 2000, 66, 9, 3898–3904.
  • 22. Graf L., Horvath K., Walcz E., Berzetei E., Burnier J., Effect of two synthetic alpha–gliadin peptides on lymphocytes in coeliac disease: identification of a novel class of opioid receptors. Neuropeptides, 1987, 9, 113–122.
  • 23. Haque E., Chand R., Milk protein derived bioactive peptides. 2006, (On-line) UK: Available: [http://www.dairyscience.info/ bio-peptides.htm.] Accessed: 17 April 2007.
  • 24. Hartmann G., Koehler P., Wieser H., Rapid degradation of gliadin peptides toxic for coeliac disease patients by proteases from germinating cereals. J. Cereal Sci., 2006, 44, 368–371.
  • 25. Hausch F., Shan L., Santiago N.A., Gray G.M., Khoshla C., Intesinal digestive resistance of immunodominant gliadin peptides. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283, G996–G1003.
  • 26. Huston J.P., Hasenöhrl R.V., Boix F., Gerhardt P., Schwarting R.K.W., Sequence-specific effects of neurokinin substance-P on memory, reinforcement and brain dopamine activity. Psychopharmacology, 1993, 112, 147–162.
  • 27. Iwaniak A., Dziuba J., Niklewicz M., The BIOPEP database – a tool for the in silico method of classification of food proteins as the source of peptides with antihypertensive activity. Acta Alimentaria, 2005, 34, 4, 417–425.
  • 28. Jauhiainen T., Korpela R., Milk peptides and blood pressure. J. Nutr., 2007, 137, 3S, 825S–829S.
  • 29. Karelin A.A., Blischenko E.Y., Ivanov V.T., A novel system of peptidergic regulation. FEBS Lett., 1998, 428, 7–11.
  • 30. Kimura K., Kanou F., Yamashita Y., Yoshimota T., Yoshihama M., Prolyl endpopetidase inhibitors derived from actynomycetes. Biosci. Biotech. Biochem., 1997, 61, 10, 1754–1756.
  • 31. Kodera T., Nio N., Identification of an angiotensin I-converting enzyme inhibitory peptides from protein hydrolysates by a soybean protease and the antihypertensive effects of hydrolysates in sponatneously hypertensive model rats. J. Food Sci., 2006, 71, 164–173.
  • 32. Korhonen H., Pihlanto A., Bioactive peptides: production and functionality. Int. Dairy J., 2006, 16, 945–960.
  • 33. Korhonen H., Pihlanto-Leppälä A., Milk protein-derived bioactive peptides – novel opportunities for health promotion. Dairy Nutr. Healthy Fut., Bulletin of the IDF, 2001, 363, 17–26.
  • 34. Korhonen H., Pihlanto-Leppälä A., Rantamäki P., Tupasela T., Impact of processing on bioactive proteins and peptides. Trends Food Sci. Technol., 1998, 9, 307–319.
  • 35. Kostyra E., Sienkiewicz-Szłapka E., Jarmołowska B., Krawczuk S., Kostyra H., Opioid peptides derived from milk proteins. Pol. J. Food Nutr. Sci., 2004, 13/54, SI1, 25–35.
  • 36. Krawczuk S., Kostyra E., Kostyra H., Frączek J., Effect of non‑enzymatic glycation on biological properties of morphiceptin. Pol. J. Food Nutr. Sci., 2000, 9/50, 39–42.
  • 37. Kupryszewski G., Chemical structure of neuropeptides Post. Biochem., 1985, 56, 195–198 (in Polish).
  • 38. Latham P.W., Therapeutic peptides revisited. Nature Biotechnol., 1999, 17, 755–758.
  • 39. Lembo P.M.C., Grazzini E., Groblewski T., O’Donnell D., Roy M-O., Zhang J., Hoffert C., Cao J., Schmidt R., Pelletier M., Labarre M., Gosselin M., Fortin Y., Banville D., Shen S.H., Ström P., Payza K., Dray A., Walker P., Ahmad S., Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs., Nat Neurosci., 2002, 5, 201–209.
  • 40. Lo W.M.Y., Farnworth E., Li-Chan E.C.Y., Angiotensin I-converting enzyme inhibitory activity of soy protein digests in a dynamic model system simulating the upper gastrointestinal tract. J. Food Sci., 2006, 71, 231–237.
  • 41. Maruyama S., Suzuki H., A peptide inhibitor of angiotensin Iconverting enzyme in the tryptic hydrolysate of casein. Agric. Biol. Chem., 1982, 46, 1393.
  • 42. Maruyama S., Miyoshi S., Nomura G., Suzuki M., Tanaka H., Maeda H., Specifity for various imino-acid-residues of a prolinespecific dipeptidylcarboxypeptidase from a Streptomyces species. Biochim. Biophys. Acta, 1993, 1162, 72–76.
  • 43. Maruyama S., Miyoshi S., Osa T., Tanaka H., Prolyl endopeptidase inhibitory activity of peptides in the repeated sequence of various proline – rich proteins. J. Ferment. Bioeng., 1992, 74, 145–148.
  • 44. Matsui T., Matsufuji H., Kawasaki T., Osajima Y., Determination of endogenous peptides with in vitro ACE inhibitory activity in normotensive human plasma by the fluorimetric HPLC method. Biosci. Biotech. Biochem., 1997, 61, 1052–1054.
  • 45. Matysiak-Budnik T., Candalh C., Cellier C., Dugave C., Namane A., Vidal-Martinez T., Cerf-Bensussan N., Heyman M., Limited efficiency of prolyl-endopeptidase in the detoxification of gliadin peptides in celiac disease. Gastroenterology, 2005, 129, 786–796.
  • 46. Maubois J.L., Léonil J., Biologically active peptides from milk. Láit, 1989, 69, 245–269.
  • 47. McLachlan A., Gullis P.G., Cornell H.J., The use of extended amino acid motifs for focussing on toxic peptides in coeliac disease. J. Biochem. Mol. Biol. Biophys., 2002, 6, 319–324.
  • 48. Meisel H., Schlimme E., Inhibitors of angiotensin-converting enzyme derived from bovine casein (casokinins). 1994, in: β-Casomorphins and Related Peptides: Recent Developments (eds. V. Brantl, H. Teschemacher). Weinheim VCH, New York, pp. 27–33.
  • 49. Meisel H., Schlimme E., Bioactive peptides derived from milk proteins: Ingredients for functional foods? Kieler Milchw. Forsch., 1996, 48, 4, 343–357.
  • 50. Meisel H., Chemical characteristics and opioid activity of an exorphin isolated in vivo digestion of casein diet. FEBS Lett., 1986, 196, 223–227.
  • 51. Meisel H., Overview on milk protein derived peptides. Int. Dairy J., 1998, 8, 363–373.
  • 52. Mercier A., Gauthier S.F., Fliss I., Immunomodulating effects of whey proteins and their enzymatic digests. Int. Dairy J., 2004, 14, 3, 175–183.
  • 53. Miyoshi S., Kaneko T., Yoshikawa Y., Fukui F., Tanaka H., Maruyama S., Hypotensive activity of enzymatic α-zein hydrolysate. Agric. Biol. Chem., 1991, 55, 1407–1408.
  • 54. Molina P.E., Abumrad N.N., Metabolic effects of opiates and opioid peptides. Adv. Neuroimmunol., 1994, 4, 105–116.
  • 55. Muehlenkamp M.R., Warthesen J.J., β-Casomorphins: Analysis in cheese and susceptibility to proteolytic enzymes from Lactococcus lactis ssp. cremoris. J. Dairy Sci., 1996, 79, 20–26.
  • 56. Nyberg F., Sanderson K., Glamsta E.L., The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers, 1997, 43, 2, 147–156.
  • 57. Parish D.C., Smyth D.G., Normanton J.R., Wolstencroft J.H., Glycyl glutamine, an inhibitory neuropeptide derived from betaendorphin. Nature, 1983, 306, 267–270.
  • 58. Pyle G.G., Paaso B., Anderson B.E., Allen D.D., Marti T., Khoshla C., Gray G.M., Low-dose gluten challenge in celiac sprue: malabsorptive and antibody responses. Clin. Gastroeneterol. Hepatol., 2005, 3, 679–686.
  • 59. Rawlings N.D., Polgár L., Barret A.J., A new family of serine – type peptidases related to prolyl oligopeptidase. Biochem. J., 1991, 279 (pt 3), 907–908.
  • 60. Roy M.K., Watanabe Y., Tamai Y., Yeast protease B-digested skimmed milk inhibits angiotensin-I-converting enzyme activity. Biotechnol. Appl. Biochem., 2000, 31, 95–100.
  • 61. Saito T., Nakamura T., Kitazawa H., Kawai Y., Itoh T., Isolation and structural analysis of antihypertensive peptides that exist naturally in gouda cheese. J. Dairy Sci., 2000, 83, 1434–1440.
  • 62. Saito Y., Okura S., Kawato A., Suginami K., Prolyl endopeptidase inhibitors in sake and its byproducts. J. Agric. Food Chem., 1997, 45, 720–724.
  • 63. Saito Y., Wanezaki K., Kawato A., Imayasu S., Antihypertensive effect of peptides in sake and its by-produsts on spontaneously hypertensive rats. Biosci. Biotech. Biochem., 1994a, 58, 812–816.
  • 64. Saito Y., Wanezaki K., Kawato A., Imayasu S., Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotech. Biochem., 1994b, 58, 1767–1771.
  • 65. Schlimme E., Meisel H., Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects. Nahrung, 1995, 39, 1–20.
  • 66. Schneider J.S., Giardiniere M., Morain P., Effects of the prolyl endopeptidase inhibitor S 17092 on cognitive deficits in chronic low dose MPTP-treated monkeys. Neuropsychopharmacology, 2002, 26, 176–182.
  • 67. Scopsi L., Balslev E., Brunner N., Poulsen H.S., Andersen J., Rank F., Larsson L.I., Immunoreactive opioid peptides in human breast cancer. Am. J. Pathol., 1989, 134, 473–479.
  • 68. Seweryn E., Pędyczak A., Banaś T., Inhibition of angiotensin‑converting enzyme by a synthetic peptide fragment of glyceraldehyde- 3-phosphate-dehydrogenase. Z. Naturforsch., 2000, 55c, 657–660.
  • 69. Silano M., De Vincenzi M., Bioactive antinutritional peptides derived from cereal prolamins: a review. Nahrung, 1999, 43, 175–184.
  • 70. Stepaniak L., Gobbetti M., Sørhaug T., Fox P.F., Højrup P., Peptides inhibitory to endopeptidase and aminopeptidase from Lactococcus lactis MG 1363 released from bovine β-casein by chymosin, trypsin and chymotrypsin. Z. Lebensm. Unters. Forsch., 1996, 202, 329–333.
  • 71. Takahashi M., Moriguchi S., Ikeno M., Kono S., Ohata K., Usui H., Kurahashi K., Sasaki R., Yoshikawa M., Studies on the ileum- contracting mechanisms and identifications as a complement C3a receptor agonist of oryzatensin, a bioactive peptide derived from rice albumin. Peptides, 1996, 17, 5–12.
  • 72. Takahashi M., Moriguchi S., Suganuma H., Shiota A., Tani F., Usui H., Kurahashi K., Sasaki R., Yoshikawa M., Identification of casoxin C, an ileum-contracting peptide derived from bovine κ-casein, as an agonist for C3a receptors. Peptides, 1997, 18, 329–336.
  • 73. Takahashi M., Moriguchi S., Yoshikawa M., Sasaki R., Isolation and characterization of oryzatensin: a novel bioactive peptide with ileum-contracting and immunomodulating activities derived from rice albumin. Biochem. Mol. Biol. Int., 1994, 33, 1151–1158.
  • 74. Venäläinen J.I., Juvonen R.O., Männistö P.T., Evolutionary relationships of the prolyl oligopeptidase family enzymes. Eur. J. Biochem, 2004, 271, 2705–2715.
  • 75. Wang W., Gonzalez de Mejia E., A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Comprehensive Rev. Food Sci. Food Safety, 2005, 4, 63–78.
  • 76. Watt P.M., Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Natur. Biotechnol., 2006, 4, 2, 177–183.
  • 77. Werner G.H., Natural and synthetic peptides (other than neuropeptides) endowed with immunomodulating activities. Immunol. Lett., 1987, 16, 363–70.
  • 78. Xiao C., Jin L.Z., Zhao X., Bovine casein peptides co-stimulate naive macrophages with lipopolysaccharide for proinflamatory cytokine production and nitric oxide release. J. Sci. Food Agric., 2000, 81, 300–304.
  • 79. Xu R.J., Bioactive peptides in milk and their biological and health implications. Food Rev. Int., 1998, 14, 1–17.
  • 80. Yamamoto N., Antihypertensive peptides derived from food proteins. Biopolymers, 1997, 43, 129–134.
  • 81. Yaron A., Naider F., Proline-dependent structural and biological properties of peptides and proteins. Crit. Rev. Biochem. Mol. Biol., 1993, 28, 31–81.
  • 82. Yoshikawa M., Kishi K., Takahashi M., Watanabe A., Miyamura T., Yamazaki M., Chiba H., Immunostimulating peptide derived from soybean protein. Ann. N.Y. Acad. Sci., 1993, 685, 375–376.
  • 83. Zhao Q., Garreau I., Sannier F., Piot J.M., Opioid peptides derived from hemoglobin: hemorphins. Biopolymers, 1997, 43, 75–98.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ccd818c3-f494-4c2d-a391-1229a2065f64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.