PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 47 | 2 |

Tytuł artykułu

Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The brittle rachis character, which causes spontaneous shattering of spikelets, has an adaptive value in wild grass species. The loci Br₁ and Br₂ in durum wheat (Triticum durum Desf.) and Br₃ in hexaploid wheat (T. aestivum L.) determine disarticulation of rachides above the junction of the rachilla with the rachis such that a fragment of rachis is attached below each spikelet. Using microsatellite markers, the loci Br₁, Br₂ and Br₃ were mapped on the homoeologous group 3 chromosomes. The Br₂ locus was located on the short arm of chromosome 3А and linked with the centromeric marker, Xgwm32, at a distance of 13.3 cM. The Br₃ locus was located on the short arm of chromosome 3B and linked with the centromeric marker, Xgwm72 (at a distance of 14.2 cM). The Br₁ locus was located on the short arm of chromosome 3D. The distance of Br₁ from the centromeric marker Xgdm72 was 25.3 cM. Mapping the Br₁, Br₂, and Br₃ loci of the brittle rachis suggests the homoeologous origin of these 3 loci for brittle rachides. Since the genes for brittle rachis have been retained in the gene pool of durum wheat, the more closely linked markers with the brittle rachis locus are required to select against brittle rachis genotypes and then to avoid yield loss in improved cultivars.

Wydawca

-

Rocznik

Tom

47

Numer

2

Opis fizyczny

p.93-98,fig.,ref.

Twórcy

autor
  • Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
  • Ibaraki University, College of Agriculture, Chuo, Ami, Inashiki, Ibaraki, Japan
autor
  • Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
autor
  • Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
autor
  • JIRCAS, Ohwashi, Tsukuba, Japan
autor
  • Agrotest, Agricultural Testing, Advisory Services and Research, Ltd., Kromeriz, Czech Republic

Bibliografia

  • Cao WG, Scoles GJ, Hucl P, 1997. The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94: 119-124.
  • Chen QF, Yen C, Yang JL, 1998. Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet Res Crop Evol 45: 407-410.
  • Dvorak J, Appels R, 1982. Chromosomal and nucleotide sequence differentiation in genomes of polyploidy Triticum species. Theor Appl Genet 63: 349-360.
  • Dvorak J, Zhang HB, 1990. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat В and G genomes. Proc Natl Acad Sci 87: 9640-9644.
  • Friebe BR, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS, 1999a. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101: 51-58.
  • Friebe BR, Tuleen NA, Gill BS, 1999b. Development and identification of a complete set of Triticum aestivum-Aegilops geniculata chromosome addition lines. Genome 42: 374-380.
  • King IP, Law CN, Cant KA, Orford SE, Reader SM, Miller ТЕ, 1997. Tritipyrum, a potential new salt-tolerant cereal. Plant Breeding 116: 127-132.
  • Luo M-C, Deal KR, Yang Z-L, Dvorak J, 2005. Comparative genetic maps reveal extreme crossover localization in Aegilops speltoides chromosomes. Theor Appl Genet 111: 1098-1106.
  • McFadden ES, Sears ER, 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37: 81-90, 107-116.
  • Miller ТЕ, Reader SM, Mahmood A, Purdie KA, King IP, 1995. Chromosome 3N of Aegilops uniaristata - a source of tolerance to high levels of aluminum for wheat. In: Li ZS, Xin ZY, eds. Proc. 8th Internat. Wheat Genet Symp 1993, China Agricultural Scientech Press, Beijing, China: 1037-1042.
  • Morrison L, 1995. Reinterpretation of dispersal strategies in Triticum L. and Aegilops L. In: Wang R-C, Jensen KB, Jaussi C, eds. Proc. 2nd Int Triticeae Symp, Utah State University, Logan, Utah, USA: 203-206.
  • Plaschke J, Ganal MW, Röder MS, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001-1007.
  • Raupp WJ, Friebe B, Gill BS, 1995. Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat, Triticum aestivum L. em Thell., and its relatives. Wheat Inform Serv 81: 50-55.
  • Riley RG, Kimber G, Law CN, 1966. Correspondence between wheat and alien chromosomes. Ann Rep Plant Breeding Inst 1964-65: 108-109.
  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixer M-H, Leroy PH, Ganal M, 1998. A microsatellite map of wheat. Genetics 149: 2007-2023.
  • Sarker P, Stebbins GL, 1956. Morphological evidence concerning the origin of the В genome in wheat. Amer J Bot 43: 297-304.
  • Shao Q, 1980. Semi-wild wheat for Xizang (Tibet). Acta Genet Sin 7: 149-156.
  • Shao Q, 1983. Semi-wild wheat for Xizang (Tibet). In: Sakamoto, ed. Proc. 6th Internat. Wheat Genet Symp, Plant Germplasm Institute, Faculty of Agriculture, Kyoto University, Kyoto, Japan: 111-114.
  • Sharma HC, Waines JG, 1980. Inheritance of tough rachis in crosses of Triticum monococcum and T. boeoticum. J Hered 71: 214-216.
  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB, 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110: 550-560.
  • Talbert LE, Magyer GM, Lavin M, Blake TK, Moylan SL, 1991. Molecular evidence for the origin of the S-derived genomes of polyploidy Triticum species. Amer J Bot 78: 340-349.
  • Urbano M, Resta P, Benedettelli S, Blanco A, 1988. A Dasypyrum villosum (L.) Candargy chromosome related to homoeologous group 3 of wheat. In: Miller TE, Koebner RMD, eds. Proc. 7th Internat. Wheat Genet. Symp., IPSR Cambridge Lab., Cambridge, UK: 169-173.
  • Yang YC, Tuleen NA, Hart GE, 1996. Isolation and identification of Triticum aestivum L. em. Thell. cv. Chinese Spring - T. peregrium Hackel disomic addition lines. Theor Appl Genet 92: 591-598.
  • WangG-Z, Miyashita N, Tsunewaki K, 1997. Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci USA 94: 14570-14577.
  • Watanabe N, 1983. Variation of D genomes affecting the morphological characters of common wheat. Japan J Breeding 33: 296-302.
  • Watanabe N, 2005. The occurrence and inheritance of a brittle rachis phenotype in Italian durum wheat cultivars. Euphytica 142: 247-251.
  • Watanabe N, Ikebata N, 2000. The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115: 215-220.
  • Watanabe N, Sugiyama K, Yamagishi Y, Sakata Y, 2003. Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheat. Hereditas 137: 180-185.
  • Watanabe N, Takesada N, Shibata Y, Ban T, 2005. Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii, the D-genome progenitor of wheat. Euphytica 144: 119-123.
  • Zohary D, Imber D, 1963. Genetic dimorphism in fruit types in Aegilops speltoides. Heredity 18: 225-231.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ccb60246-f1a0-46ca-91fe-834fff7980c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.