PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 6 |

Tytuł artykułu

Mechanizmy chroniace rosline przed stresem oksydacyjnym, wywolanym niekorzystnymi warunkami srodowiska

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Like other organisms, the plants are continually exposed in their environment to a wide range of different stresses, originated from human activities (air pollutants, acid rain, xenobiotics) or having natural causes such as drought, low or high temperature, high light intensities and nutrient deficiency. A common feature of various biotic and abiotic stress factors is their potential to increase the production of reactive oxygen species (ROS) in plant tissues. ROS are also generated in plant cells during normal metabolic functions. Free radicals are highly reactive chemically and can induce extensive degradation of membrane lipids, proteins and DNA. The ability of a plant to reduce the harmful effects of free radical determines its tolerance to such a stress. To prevent such damages the plants have developed antioxidative system composed of non-enzymic antioxidants such as glutathione, vitamin C (ascorbate) and E (α-tocopherol) as well as protective enzymes (e.g. superoxide dismutase, ascorbate peroxidase, glutathione reductase ). The problem of yield decrease in crop species grown und er stress conditions has focused the attention on metabolic mechanisms and substances differentiating plant susceptibility to injuries caused by various environmental stresses.

Wydawca

-

Rocznik

Tom

45

Numer

6

Opis fizyczny

s.115-132,tab.,rys.,bibliogr.

Twórcy

autor
  • Szkola Glowna Gospodarstwa Wiejskiego, ul.Nowoursynowska 166, 02-787 Warszawa

Bibliografia

  • [1] Aono M., Saji H., Sakamoto, A., Tanaka K. 1995. Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol. 36: 1687-1691.
  • [2] Amott T., Murphy T.M. 1991. A comparison of the effects of a fungal elicitor and ultraviolet radiation on ion transport and hydrogen peroxide synthesis by rose cells. Environ. Exp. Bot. 31: 209-216.
  • [3] Asada K. 1992. Ascorbate peroxidase - a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85: 235-241.
  • [4] Asada K. 1994. Production and action of active oxygen species in photosynthetic tissues. In: Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. (Ed.): Foyer, C. H. and Mullineaux, P. M. CRC Press, Boca Raton: 77-104.
  • [5] Badiani M., Schenone G., Paolacci A.R., Fumagalli I. 1993. Daily fluctuations of antioxidants in bean (Phaseolus vulgaris) leaves as affected by the presence of ambient air pollutans. Plant Cell Physiol. 34(2): 271-279.
  • [6] Barnes J.D., Reiling K., Davison A.W., Renner C.J. 1988. Interaction between ozone and winter stress. Environ. Poll. 53: 235-254.
  • [7] Bartosz G. 1995. Druga twarz tlenu. PWN, Warszawa: 17-28, 166-180.
  • [8] Cakmak I., Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide disrnutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 99: 1222-1227.
  • [9] Cakmak I., Marschner H. 1993. Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. Plant Soil 155/156: 127-130.
  • [10] Cakmak I., Strbac D., Marschner H. 1993. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J. Exp. Bot. 44: 127-142.
  • [11] Chameides W. 1989. The chemistry of ozone deposition to plant leaves: role of ascorbic acid. Environ. Sci. Technol. 23: 595-600.
  • [12] Chen J., Goldsborough P.B. 1994. Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant. Physiol. 106: 233-239.
  • [13] Coleman J.O.D., Blake-Kalff M.A., Davies T.G.M. 1997. Detoxification of xenobiotics by plants:chemical modification and vacuolar compartmentation. Trends in plant science, 144-151.
  • [14] Doke N., Miura Y., Leandro M. S., Kawakita K. 1994. Involvement of superoxide in signal transduction: Responses to attack by pathogens, physical and chemical shocks, and UV irradiation. In: Causes of Photooxidative Stress and amelioration of Defence Systems in Plants (Ed.): C.H. Foyer and P.M. Mullineaux. CRC Press, Boca Raton, 177-197.
  • [15] EdwardsE.A., Rawsthorne S.,Mullineaux P.M. 1990. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 133: 278-284.
  • [16] Filek M., Bączek R., Niewiadomska E., Pilipowicz M., Kościelniak J. 1997. Effect of high temperature treatment of Vicia faba roots on the oxidative stress enzymes in leaves. Acta Biochimica Polonica 44(2): 315-322.
  • [17] Foyer C.H., Lelandais M., Edwards E.A., Mullineaux P.M. 1991a. The role of ascorbate in plants, interactions with photosynthesis and regulatory significance. In: Active Oxygen/Oxidative Stress and Plant Metabolism. (Ed.): Pell, E.J., Steffen K.L. Current Topics in Plant Physiology. Vol.6. American Society of Plant Physiologist, Rockville, MD: 131-134.
  • [18] Foyer C.H., Lelandais M., Galap C., Kunert K.J. 1991b. Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves wider normal and stress conditions. Plant Physiol. 97: 863-872.
  • [19] Foyer C.H., Descourvieres P., Kunert K.J. 1994. Protection against oxygen radicals: An important defence mechanism studied in transgenic plants. Plant Cell Environ. 17: 507-523.
  • [20] Foyer C.H., Souriau N., Perret S., Lelandais M., Kunert K.J., Pruvost C., Jouanin L. 1995. Over-expression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and improved photosynthesis in poplar (Populus tremula x P. alba) trees. Plant Physiol. 109: 1047-1057.
  • [21] Foyer C.H., Lopez-Delgado H., Dat J.F., Scott I.M. 1997. Hydrogen peroxide – and glutathione - associated mechanisms of acclimatory stress tolerance and signalling Physiol. Plant. 100: 241-254.
  • [22] Gallego S.M., Benavides M.P., Tomaro M.L. 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. Lim. 121: 2, 151-159.
  • [23] Gwóźdź E.A. 1996. Molekularne podstawy odpowiedzi roślin na stresy środowiskowe. W: Nowe tendencje w biologii molekularnej i inżynierii genetycznej oraz medycynie. (Ed.): Barciszewski J., Łastowski K., Twardowski T. Wyd. Sorus, Poznań: 369-491.
  • [24] Hodgson R.A.J., Raison J.K. 1991. Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling-induced photoinhibition. Planta 183: 222-228.
  • [25] Huner N.P.A., Maxwell D.P., Gray G.R.V., Savitch L.V., Krol M., Ivanov A.G., Falk S. 1996. Sensing environmental temperature change through imbalances between energy supply and energy consumption: Redox state of photosy stem II. Physiol. Plant. 98: 358-364.
  • [26] Knigh H., Trewava A.J., Knight M.R. 1996. Cold calcium signalling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8: 489-503.
  • [27] Marschner H., Cakmak I. 1989. High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean (Phaseolus vulgaris) plants. J. Plant Physiol. 134: 308-315.
  • [28] Matsuda Y., Okuda T., Sagisaka S. 1994. Regulation of protein-synthesis by hydrogen peroxide in crowns of winter-wheat. Biosci. Biotech. Biochem. 58: 906-909.
  • [29] McKersie B.D., Bowley S.R. 1996. Active oxygen nad freezing injury in transgenic plants. Invited presentation at the 5th International Plant Cold Hardines Seminar, Corvallis, Oregon, August 1996.
  • [30] Noctor G., Strohm M., Jouan.in L., Kunert K.J., Foyer C.H., Rennenberg H. 1996. Synthesis of glutathione in leaves of transgenic poplar (Populus tremula x P. alba) over-expressing γ-glutamyl cysteine synthetase. Plant Physiol. 112: 1071-1078.
  • [31] Öquist G., Huner N.P.A. 1993. Cold-hardening-induced resistance to photoinhibition of photosynthesis in winter rye is dependent upon an increased capacity for photosynthesis. Planta 189: 150-156.
  • [32] Polle A., Chakrabarti K., Schürmann W., Rennenberg H. 1990. Composition properties of hydrogen decomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies, L.). Plant Physiol. 94: 312-319.
  • [33] Polle A., Chakrabarti K., Chakrabarti S., Seifert F.. Schramel P.. Rennenberg H. 1992. Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies) trees. Plant Physiol. 99: 1084-1089.
  • [34] Polle A.. Rennenberg H. 1993. Significance of antioxidants in plant adaptation to environmental sterss. In: Plant adaptation to environmental stress. (Ed.): Fowden L., Mansfield T., Stoddart J. Chapman&Hall rozdz. 15: 263-273.
  • [35] Polle A.. Rennenberg H. 1994. Photooxidative stress in trees. In Causes of Photooxidative Stress and amelioration of Defence Systems in Plants. (Ed.): C. H. Foyer and P. M. Mullineaux: 200-212.
  • [36] Polle A., Otter T., Mehne-Jacobs B. 1994. Effect of magnesium-deficiency on antioxidative systems in needles of Norway spruce (Picea abies L.) Karst grown with different ratios of nitrate and ammonium as nitrogen sources. New Phytol. 128: 621-628.
  • [37] Polle A., Morawe B. 1995. Seasonal changes of the antioxidative systems in foliar buds and leaves of field-grown beech trees (Fagus silvatica L.) in a stressful climate. Bot. Acta 108: 314-320.
  • [38] Prasad T.K.. Anderson M.D., Martin B.A., Stewart C.R. 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6: 65-74.
  • [39] Prasad T.K., Anderson M.D., Stewart C.R. 1995. Localisation and characterisation of peroxidases in the mitochondria of chilling-acclimated maize seedlings. Plant Physiol. 108: 1597-1605.
  • [40] Prasad T.K. 1996. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant Journal 10(6): 1017-1026.
  • [41] Price A.H., Taylor A., Ripley S.J., Griffiths A., Trewavas A.J., Knight M.R. 1994. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 16: 1301-1310.
  • [42] Ranieri A., Lencioni L.. Schenone G., Soldatini G.F. 1993. Glutathione-ascorbic acid cycle in pumpkin plants grown under polluted air in open-top chambers. J. Plant Physiol. 142: 286-290.
  • [43] Rensburg L., Kruger G.H.J., Van-Rensburg L. 1994. Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. Journal of Plant Physiology 143: 6, 730-737.
  • [44] Schulze E.D., De Vries W., Hauhs M., Rosen K., Rasmussen L., Tamm C.O., Nilsson J. 1989. Critical loads for nitrogen deposition on forest ecosystems. Water, Air and Soil Pollution 48: 451-456.
  • [45] Sgherri C.L., Loggini B., Puliga S., Navari-Izzo F. 1994. Antioxidant system in Sparobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry 35: 561-565.
  • [46] Sgherri C.L., Navari-Izzo F. 1995. Sunflower seedlings subjected to increasing water deficit stress: Oxidative stress and defense mechanisms. Physiol. Plant. 93: 25-30.
  • [47] Shanna Y.K., Leon J., Raskin I., Davis K.R. 1996. Ozone-induced responses in Arabidopsis thaliana - the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc. Natl. Acad. Sci. USA 93: 5099-5104.
  • [48] Smirnoff N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New. Phytol. 125: 27-58.
  • [49] Starck Z., Chołuj D., Niemyska M. 1995. Fizjologiczne reakcje roślin na niekorzystne czynniki środowiska. Wyd. SGGW: 7-25.
  • [50] Stroiński A. 1996. Stres oksydacyjny w komórce roślinnej wywołany działaniem metali ciężkich. Materiały konferencyjne "Dwa oblicza tlenu", 26 kwietnia 1996.
  • [51] Stroiński A., Bandurska, H. 1996. Wpływ kadmu na poziom antyutleniaczy w bulwie ziemniaka. W: Ekofizjologiczne aspekty reakcji roślin na działanie abiotycznych czynników stresowych. ZFR PAN Kraków (Misztalski S., Grzesiak, Z., red.): 191-195.
  • [52] Sutherland M.W. 1991. The generation of oxygen radicals during host plant responses to infection. Physiol. Mol. Plant Pathol. 39: 79-93.
  • [53] Walker M.A., McKersie B.D. 1993. Role of the ascorbate - glutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141: 234-239.
  • [54] Wang C. Y. 1995. Temperature preconditioning affects glutathione content and glutathione reductase activity in chilled zucchini squash. J. Plant Physiol. 145: 148-152.
  • [55] Wingate V.P.M., Lawton M.A., Lamb C.J. 1988. Glutathione causes a massive and selective induction of plant defence genes. Plant Physiol. 87: 206-210.
  • [56] Yalpani N., Enyedi A.J., León J., Raskin I. 1994. Ultraviolet light and ozone stimulate accumulation of salycylic acid, pathogenesis-related proteins and virus resinance in tobacco. Planta 193: 372-376.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-cc6a77fb-0813-4507-ac53-6e461a70f9ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.