PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 52 | 4 |

Tytuł artykułu

Computational analysis of Ancylostoma ceylanicum cysteine proteinase

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The potential tertiary structure of Ancylostoma ceylanicum cysteine proteinase was obtained by Automatic Program 3D-JIGSAW and used for finding homologues of known structure by VAST program. The results of computational analysis showed the presence of domains recognizing host immunoglobulins. Based on this analysis we suggest that this protein is involved in cleaving of host antibodies and therefore it may be promising vaccine candidate. In this paper we present the computational analysis of parasitic antigen which is very helpful in evaluation of the potential role of this protein.

Wydawca

-

Rocznik

Tom

52

Numer

4

Opis fizyczny

p.277-281,fig.,ref.

Twórcy

autor
  • Warsaw Agricultural University, Ciszewskiego 8, 02-786 Warsaw, Poland

Bibliografia

  • [1] Hotez P.J., Hawdon J.M., Cappello M., Jones B.F., Pritchard D.I. 1995. Molecular pathobiology of hookworm infection. Infectious Agents and Disease 4: 71-75.
  • [2] Harrison L.M., Cordova J.L., Cappello M. 2001. Ancylostoma caninum anticoagulant peptide-5: immunolocalization and in vitro neutralization of major hookworm anti-thrombotic. Molecular and Biochemical Parasitology 115: 101-107.
  • [3] Hotez P.J., Pritchard D.I. 1995. Hookworm infection. Scientific American 272: 68-74.
  • [4] Chan M.S. 1997. The global burden of intestinal nematode infections - fifty years on. Parasitology Today 13: 438-443.
  • [5] McKerrow J.H. 1989. Parasites proteases. Experimental Parasitology 68: 111-115.
  • [6] Kofta W., Mieszczanek J., Plucienniczak G., Wedrychowicz H. 2000. Successful immunisation of rats against fasciolosis. Vaccine 18: 2985-2990.
  • [7] Mieszczanek J., Kofta W., Wedrychowicz H. 2000. Molecular cloning of a cysteine proteinase cDNA from adult Ancylostoma ceylanicum by the method of rapid amplification of cDNA ends using polymerase chain reaction. Parasitology Research 86: 993-998.
  • [8] Bates P.A., Kelley L.A., MacCallum R.M., Sternberg M.J.E. 2001. Enhancement of protein modelling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins: Structure, Function and Genetics, Suppl 5: 39-46.
  • [9] Bates P.A., Sternberg M.J.E. 1999. Model building by comparison at CASP3: using expert knowledge and computer automation. Proteins: Structure, Function and Genetics, Suppl 3: 47-54.
  • [10] Contreras-Moreira B., Bates P.A. 2002. Domain Fishing: a first step in protein comparative modelling. Bioinformatics 18: 1141-1142.
  • [11] Agniswamy J., Nagiec M.J., Liu M., Schuck P., Musser J.M., Sun P.D. 2006. Crystal structure of group a streptococcus mac-1: insight into dimermediated specificity for recognition of human IgG. Structure 14: 225-235.
  • [12] Meno K., Thorsted P.B., Ipsen H., Kristensen O., Larsen J.N., Spangfort M.D., Gajhede M., Lund K. 2005. The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. Journal of Immunology 175: 3835-3845.
  • [13] Guncar G., Klemencic I., Turk B., Turk V., Karaoglanovic-Carmona A., Juliano L., Turk D. 2000. Crystal structure of cathepsin X: a flip-flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease. Structure 15: 305-313.
  • [14] Musil D., Zucic D., Turk D., Engh R.A., Mayr I., Huber R., Popovic T., Turk V., Towatari T., Katunuma N., et al. 1991. The refined 2.15 AX-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 10: 2321-2330.
  • [15] de Halleux S., Stura E., Van der Elst L., Carlier V., Jacquemin M., Saint-Remy J.M. 2006. Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. The Journal of Allergy and Clinical Immunology 117: 571-576.
  • [16] Harris G.W., Pickersgill R.W., Howlin B., Moss D.S. 1992. The segmented anisotropic refinement of monoclinic papain by the application of the rigidbody TLS model and comparison to bovine ribonuclease A. Acta Crystallographica, Section B: Structural Science 48: 67-75.
  • [17] Hofmann B., Schomburg D., Hecht H.J. 1993. Crystal structure of a thiol proteinase from Staphylococcus aureus V-8 in the E-64 inhibitor complex. Acta Crystallographica, Section A: Foundations of Crystallography (Supplement) 49: 102.
  • [18] Lei B., Liu M., Meyers E.G., Manning H.M., Nagiec M.J., Musser J.M. 2003. Histidine and aspartic acid residues important for immunoglobulin G endopeptidase activity of the group A Streptococcus opsonophagocytosis-inhibiting Mac protein. Infection and Immunity 71: 2881-2884.
  • [19] Berasain P., Carmona C., Frangione B., Cazzulo J.J., Goni F. 2003. Specific cleavage sites on human IgG subclasses by cruzipain, the major cysteine proteinase from Trypanosoma cruzi. Molecular and Biochemical Parasitology 130: 23-29.
  • [20] Kumar S., Pritchard D.I. 1992. The partial characterization of proteases present in the excretory/secretory products and exsheathing fluid of the infective (L3) larva of Necator americanus. International Journal for Parasitology 22: 563-72.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-cb714fc9-d6dc-496d-b0b3-bcc55fcf4eea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.