PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 05 | 1 |

Tytuł artykułu

The malignant transformation of Syrian hamster embryo [SHE] cells in primary culture by malachite green: the transformation is associated with enhanced vimentin phosphorylation, PCNA expression and BrdU incorporation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Malachite green (MG) consisting of green crystals with a metallic lustre, is very soluble in water and is highly cytotoxic to mammalian cells and also acts as a liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. The malignant transformation of Syrian hamster embryo (SHE) cells by MG has been reported earlier. In this study, an attempt has been made to study the levels of vimentin, vimentin phosphorylation and the expression of PCNA and BrdU incorporation in MG transformed cells compared to control cells. Immunohistochemical and immunoprecipitation studies showed enhanced levels of vimentin in transformed cells compared to normal cells. Metabolic labelling studies showed an overall increase in phosphorylation of total cellular proteins as well as hyperphosphorylation of vimentin in transformed cells. Transformed cells also showed an increased doubling time, PCNA expression and BrdU incorporation. This study indicates a close relationship between vimentin levels, hyperphosphorylation of vimentin and increased cell proliferation associated with the malignant transformation of SHE cells.

Wydawca

-

Rocznik

Tom

05

Numer

1

Opis fizyczny

p.75-89,fig.

Twórcy

  • Cancer Research Institute, Parel, Mumbai -400012, India
autor
autor

Bibliografia

  • 1. WHO, World Health Organisation Technical Report Series No. 309, Geneva, 1965.
  • 2. Windholz, M., Budhavani, S., Blumetti, R. F. and Otterbein, E. S. in: The Merck Index, 10th ed., Rahway, NJ. 1983, 813.
  • 3. Allen, J. L., Gofus, J. E. and Metmertz, J. R. Determination of malachite green residues in the eggs, fry, and adult muscle tissue of rainbow trout (Oncorhynchus my kiss). J. Assoc. Anal. Chem. 77 (1994) 553-557.
  • 4. Panandiker, A., Maru, G. B. and Rao, K. V. K. Dose response effects of malachite green on free radical formation, lipid peroxidation and DNA damage in Syrian hamster embryo cells and their modulation by antioxidants. Carcinogenesis 15 (1994) 2445-2448.
  • 5. Rao, K. V. K. Comparative cytotoxic effects of the non-permitted food colouring agents metanil yellow, orange II, rhodamine B and malachite green on hamster dermal and C3H/10T1/2 fibroblasts. Bombay Hospital J. 32 (1989) 61-65.
  • 6. Panandiker, A., Fernandes, C. and Rao, K. V. K. The cytotoxic properties of malachite green are associated with the increased demethylase, arylhydrocarbon hydroxylase and lipid peroxidation in primary cultures of Syrian hamster embryo cells. Cancer Lett. 67 (1992) 93-101.
  • 7. Rao, K. V. K. Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumour promoter. Toxicol. Lett. 81 (1995) 107-113.
  • 8. Fernandes, C., Lalitha, V. S. and Rao, K. V. K. Enhancing effect of malachite green on the development of hepatic pre-neoplastic lesions induced by N-nitrosodiethylamine in rats. Carcinogenesis 12 (1991) 839- 845.
  • 9. Rao, K. V. K. and Fernandes, C. Progressive effects of malachite green at varying concentrations on the development of N-nitrosodiethylamine induced hepatic preneoplastic lesions in rats. Tumori 82 (1996) 280-286.
  • 10. Panandiker, A., Fernandes, C., Gundu Rao, T. K. and Rao, K.V. K. Morphological transformation of Syrian hamster embryo cells in primary culture by malachite green correlates well with the evidence for formation of reactive free radicals. Cancer Lett. 74 (1993) 31-36.
  • 11. Mahudawala, D. M., Redkar, A. A., Wagh, A. A., Gladstone, B. and Rao, K. V. K. Malignant transformation of Syrian hamster embryo (SHE) cells in culture by malachite green, an agent of environmental importance. Indian J. Expt. Biol. 37 (1999) 904-918.
  • 12. Rao, K. V. K., Mahudawala, D. M. and Redkar, A. A. Malignant transformation of Syrian hamster embryo (SHE) cells in primary culture by malachite green: Transformation is associated with abrogation of G2/M checkpoint control. Cell Biol. Intern. 22 (1998) 581-589.
  • 13. Reznikoff, C. A., Bertram, J. S., Brankow, D. W. and Heidelberger, C. Qualitative and quantitative studies of chemical transformation of cloned C3H mouse embryo cells sensitive to post confluence inhibition of cell division. Cancer Res. 33 (1973) 3239-3249.
  • 14. Ho, D. T. and Roberge, M. The antitumour drug fostriecin induces vimentln hyperphosphorylation and intermediate filament reorganisation. Carcinogenesis 17 (1996) 967-972.
  • 15. Bravo, R. Synthesis of the nuclear protein cyclin (PCNA) and its relationship with DNA replication. Exp. Cell Res. 163 (1986) 287-296.
  • 16. Celis, J. E. and Celis, A. Cell cycle dependent variation in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proc. Natl. Acad. Sci. USA 82 (1985) 3262-3271.
  • 17. Fuchs, S. E. and Weber, K. Intermediate filaments: structure, dynamics, function and disease. Annu. Rev. Biochem. 63 (1994) 345-382.
  • 18. Colucci-Quyon, E., Porlier, M. M., Dunia, I., Paulia, D., Poumin, S. and Babinet, C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79 (1994) 679-694.
  • 19. Isfort, R. J., Cody, D. B., Doersen, C. J., Kerckaert, G. A. and LeBoeuf, R. A. Alterations in cellular differentiation, mitogenesis, cytoskeleton and growth characteristics during Syrian hamster embryo cell multistep in vitro transformation. Int. J. Cancer 59 (1994) 114-125.
  • 20. Bisgaard, H. C., Ton, P. T., Nagy, P. and Thorgeirsson, S. S. Phenotypic modulation of keratins, vimentin and alpha-feto protein in cultured rat liver epithelial cells after chemical, oncogene and spontaneous transformation. J. Cell. Physiol. 159 (1994) 485-494.
  • 21. Ben-Ze’ev, A. Differential control of cytokeratins and vimentin synthesis by cell cell contact and cell spreading in cultured epithelial cells. J. Cell Biol. 99 (1984) 1424-1433.
  • 22. Ben-Ze’ev, A. Cell density and cell shape related regulation of vimentin and cytokeratin synthesis. Exp. Cell Res. 157 (1985) 520-532.
  • 23. Pagan, R., Lobera, M. and Vilaro, S. Epithelial-mesenchymal transition in cultured neonatal hepatocytes. Hepatology 21 (1995) 820-831.
  • 24. Engers, R., Gerharz, C. D., Moll, R., Pohl, A., Sarbia, M. and Gabbert, H. E. Intercloning heterogeneity in a human epitheloid sarcoma cell line (GRU-I). Int. J. Cancer 59 (1994) 548-553.
  • 25. Isfort, R. J., Kerckaert, G. A., Cody, D. B., Carter, J., Driscoll, K. E. and LeBoeuf, R. A. Isolation and biological characterisation of morphological transformation sensitive Syrian hamster embryo cells. Carcinogenesis 17 (1996) 997-1005.
  • 26. Watanabe, M. and Suzuki, K. Expression dynamics of transforming phenotypes in X-irradiated Syrian golden hamster embryo cells. Mutat. Res. 249 (1991) 71-80.
  • 27. Nakano, S. and Ts’o, P. O. P. Cellular differentiation and neoplasia. Characterisation of subpopulation of cells that have neoplasia related growth properties in Syrian hamster embryo cell cultures. Proc. Natl. Acad. Sci. USA 78 (1981) 4995-4999.
  • 28. Fujiki, H. and Suganuma, M. Tumour promotion by inhibitors of protein phosphatases 1 and 2A. The okadaic acid class of compounds. Adv. Cancer Res. 61 (1994) 143-191.
  • 29. Ando, S., Tanabe, K., Gonda, Y., Sato, C. and Inagaki, M. Domain and sequence specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry 28 (1989) 2974-2979.
  • 30. Chou, Y. H., Bischoff, J. R., Beach, D. and Goldman, R. D. Intermediate filament reorganisation during mitosis is mediated by P34cdc2 phosphorylation of vimentin. Cell 62 (1990) 1063-1071.
  • 31. Bloom, G. S. and Lockwood, A. H. Redistribution of myosin during morphological reversion of Chinese hamster ovary cells by dibutyl cyclic AMP. Exp. Cell Res. 129 (1980) 31-45.
  • 32. Rosok, M. J. and Rohrschneider, L. R. Increased phosphorylation of vinculin on tyrosine does not occur during release of stress fibres before mitosis in normal cells. Mol. Cell. Biol. 3 (1983) 475-479.
  • 33. Geisler, N., Hatzfeld, M. and Weber, K. Phosphorylation in vitro of vimentin by protein kinase A and C is restricted to the head domain. Identification of the phosphoserine sites and their influence of filament formation. Eur. J. Biochem. 183 (1989) 411-447.
  • 34. Inagaki, M., Nishi, Y., Nishizawa, K., Masuyama, M. and Sato, C. Site specific phosphorylation induced disassembly of vimentin filaments in vitro. Nature 328 (1987) 649-652.
  • 35. MacMillian-Crow, L. A. and Lincoln, T. M. High affinity binding and localisation of the cyclic GMP-dependent protein kinase with the intermediate filament protein vimentin. Biochemistry 33 (1994) 8035- 8043.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c9c5931d-9c82-417a-80cc-4e9d4026448a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.