PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 61 Supplement |

Tytuł artykułu

Mitochondrial and nuclear DNA differentiation of Picea abies populations in Poland

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The natural stands of Norway spruce in Poland are split between the southern and the northeastern parts of the country. Two so-called "spruceless" zones separate the northern spruce locations from those in the south, one "spruceless" zone is situated in Central Poland, and the other one in the Beskid Mts. Mitochondrial (STS) and nuclear (SSR) markers were used to perform the genetic identification of Norway spruce. Four different variants of haplotypes, "a", "b", "c" and "d", were found to occur in the nad1 locus of STS markers. Populations from the northern range of Picea abies distribution in Poland harboured exclusively haplotypes "c" and "d", except for the Białowieża population which had haplotypes "a" and "c". Populations from the "spruceless" zones contained four types of haplotypes whilst those from southern Poland were mostly composed of haplotype "a". High mean gene diversity was observed for both STS and SSR markers (HT = 0.529, and HT = 0.851, respectively). The total genetic differentiation of Norway spruce populations was very low (FST= 0.088). Two main groups of populations were distinguished in the dendrogram defined by Nei's genetic distances based on microsatellite markers. The distribution of the genotypes was scattered and did not show any connection with the spatial distribution of P. abies in Poland. Only the mtDNA markers were able to differentiate the northern populations of Norway spruce from the southern ones, proving the historical separation between the Baltico-Nordic and the Hercyno-Carpathian ranges of P. abies in Poland. By contrast, the microsatellite data suggested an overlap between the genotypes due to the human manipulation of Norway spruce stands in the past.

Wydawca

-

Czasopismo

Rocznik

Opis fizyczny

p.119-129,fig.,ref.

Twórcy

  • Forest Research Institute, Braci Lesnej 3, Sekocin Stary, 05-090 Raszyn, Poland

Bibliografia

  • Boratyński A. 1998. About disjunctions of Norway spruce (in Polish). In: Biology of Norway spruce.
  • Boratyński A. and Bugała W. (eds.). Polish Academy of Sciences, Institute of Dendrology, Poznań, pp. 79–90.
  • Bradshaw R.H.W. 2004. Past anthropogenic influence on European forest and some possible genetic consequences. Forest Ecology and Management 197: 203–212.
  • Bucci G., Vendramin G.G. 2000. Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Molecular Ecology 9: 923–934.
  • Collignon M.A., Favre J.M. 2000. Contribution to the post glacial history at the western margin of Picea abies’ natural area using RAPD markers. Annals of Botany 85: 713–722.
  • Delmotte F., Leterme N., Simon J.C. 2001. Microsatellite allele sizing: difference between automated capillary electrophoresis and manual technique. BioTechniques 31: 810–818.
  • Forests in Poland 2006. General Directorate of the State Forests. Warsaw 2006.
  • Fournier D., Perry D.J., Beaulieu J., Bousquet J., Isabel N. 2002. Optimizing expressed sequence tag polymorphism by single strand conformation polymorphism in spruces. Forest Genetics 9(1): 11–19.
  • Gugerli F., Sperisen C., Büchler U., Magni F., Geburek T., Jeandroz S., Senn J. 2001. Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western Alps. Molecular Ecology 10: 1255–1263.
  • Idury R.M., Cardon L.R. 1997. A simple method for automated allele binning in microsatellite markers. Genome Research 7: 1104–1109.
  • Jaramillo-Correa J.P., Bousquet J., Beaulieu J., Isabel N., Perron M., Bouillé M. 2003. Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea. Theoretical and Applied Genetics 106: 1353–1367.
  • Lagercrantz U., Ryman N. 1990. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44: 38–53.
  • Lewandowski A., Burczyk J. 2002. Allozyme variation of Picea abies in Poland. Scandinavian Journal of Forest Research 17: 487–494.
  • Li Y.-C., Korol A.B., Fahima T., Beiles A., Nevo E. 2002. Microsatellites: genomic distribution, puputative functions and mutational mechanisms: a review. Molecular Ecology 11: 2453–2465.
  • Maghuly F., Pinsker W., Praznik W., Fluch S. 2006. Genetic diversity in managed subpopulations of Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management 222: 266–271.
  • Matras J. 1996. Conservation of gene resources of Norway spruce (Picea abies (L.) Karst.) in Poland. Sylwan 10: 57–71.
  • Mitton J.B., Kreiser B.R., Rehfeldt G.E. 2000. Primers designed to amplify a mitochondrial nad1 intron in ponderosapine, Pinus ponderosa, limber pine, P. flexilis, and Scots pine, P. sylvestris. Theoretical and Applied Genetics 101: 1269–1272.
  • Modrzyński J., Prus-Głowacki W. 1998. Isoenzymatic variability in some of the Polish populations of Norway spruce (Picea abies) in IUFRO-1972 provenance trial. Acta Societatis Botanicorum Poloniae 67(1): 75–82.
  • Nei M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
  • Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford.
  • Neale D.B., Devey M.E., Jemstad K.D., Ahuja M.R., Alosi M.C., Marshall K.A. 1992. Use of DNA markers in forest tree improvement research. New Forest 6: 391–407.
  • Newton A.C., Allnutt T.R., Gillies A.C.M., Lowe A.J., Ennos R.A. 1999. Molecular phylogeography, intraspecific variation and the conservation of tree species. Tree 14(4): 140–141.
  • Nowakowska J., Bastien C., Musch B. 2005. Genetic variability of Polish Scots pine provenances assessed with microsatellite markers. In: Analysis of Microsatellite Sequences in Scots Pine. NowakowskaJ. (ed.). Forest Research Institute, PROFOREST Centre of Excellence, Warsaw, pp. 79–88.
  • Nowakowska J.A. 2006. Zastosowanie markerów DNA (RAPD, SSR, PCR-RFLP i STS) w genetyce drzew leśnych, entomologii, fitopatologii i łowiectwie. Leśne Prace Badawcze 1: 73–101.
  • Nowakowska J., Bieniek J., Jabłonowski S. 2006. RAPD polymorphism in Norway spruce (Picea abies L. Karst.) populations in Poland. Folia Forestalia Polonica 48: 27–44.
  • Orzeł S., SochaJ., Ochał W. 1999. Productivity of mountain spruce stands of medium age classes as related to their altitude location above sea level. (In Polish). Sylwan 5: 37–45.
  • Pemberton J.M., Slate J., Bancroft D.R., Barrett J.A. 1995. Nonamplifying alleles at microsatellites loci: a caution for parentage and population studies. Molecular Ecology 4: 249–252.
  • Perron M., Perry D.J., Andalo C., Bousquet J. 2000. Evidence from sequence-tagged-site markers of a recent progenitor-derivate species pair in conifers. Proceedings of the National Academy of Sciences of the USA 97(21): 11331–11336.
  • Perry D.J., Bousquet J. 1998. Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers. Theoretical and Applied Genetics 97: 735–743.
  • Pfeiffer A., Olivieri A.M., Morgante M. 1997. Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40(4): 411–419.
  • Puumalainen J., Kennedy P., Folving S. 2003. Monitoring forest biodiversity: aEuropea n perspective with reference to temperate and boreal forest zone. Journal of Environmental Management 67: 5–14.
  • Ratkiewicz M., Borkowska A. 2002. Zastosowanie technik molekularnych w ekologii. Wiadomości Ekologiczne 2: 99–121.
  • Ravazzi C. 2002. Late Quaternary history of spruce in southern Europe. Review of Palaeobotany and Palynology 120: 131–177.
  • Raymond M., Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.
  • Soranzo N., Alía R., Provan J., Powell W. 2000. Pattern of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Molecular Ecology 9: 1205–1211.
  • Sperisen C., Büchler U., Gugerli F., Mátyás G., Gebourek T., Vendramin G.G. 2001. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Molecular Ecology 10: 257–263.
  • Środoń A. 1967. The common spruce in the Quaternary of Poland. Acta Palaeobotanica 8(2): 1–60.
  • Vendramin G.G., Anzidei M., Madaghiele A., Sperisen C., Bucci G. 2000. Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies Karst.). Genome 43: 68–78.
  • Wang Z., Weber J.L., Zhong G., Tanksley S.D. 1994. Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics 88: 1–6.
  • Yazdani R., Scotti I., Jansson G., Plomion C., Mathur G. 2003. Inheritance and diversity of simple sequence repeat (SSR) microsatellite markers in various families of Picea abies. Hereditas 138: 219–227.
  • Yeh F.C., Yang, R., Boyle, T. 1999. POPGENE v. 1.31, Microsoft Window-based Freeware for Population Genetic Analysis.
  • Załęski A. 2005. System regionalizacji leśnego materiału rozmnożeniowego (LMR) elementem ochrony zasobów genowych. In: Ochrona leśnych zasobów genowych i hodowla selekcyjna drzew leśnych w Polsce – stan i perspektywy. ZG SITLiD, Warsaw, pp. 38–44.
  • Zhang D.X., Hewitt G.M. 2003. Nuclear DNA analysis in genetic studies of populations: practice, problems and prospects. Molecular Ecology 12: 563–584.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c98a759d-dec6-44cc-8655-f00ffc6d6f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.