PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 53 | 1 |

Tytuł artykułu

Chemosynthesis-based associations on Cretaceous plesiosaurid carcasses

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of this report is to document first Mesozoic occurrences of chemosynthesis−based communities developed on large marine reptile carcasses. Micro−grazing provannid gastropods (typical of chemosynthetic communities) are associated with plesiosaurid skeletons in the Upper Cretaceous deposits of Hokkaido, northern Japan. The cancellous bones of the examined plesiosaurid bones contain a ubiquity of iron sulfides within the bone trabeculae, which provides evidence of anaerobic sulfate reduction of the bone lipids. We also report numerous microborings in the bone trabeculae, which might result from the activity of sulfur−oxidizing bacteria. This finding addresses the hotly debated problem of the emergence and radiation of whale bone faunas. We postulate that vertebrate bone environments in the Northwest Pacific region were settled repeatedly by animals from a regional pool of chemosynthesis−based communities that flourished in the methane seeps and/or hot vents that were present during the Late Cretaceous–Miocene.

Wydawca

-

Rocznik

Tom

53

Numer

1

Opis fizyczny

p.97-104,fig.,ref.

Twórcy

autor
  • Polish Academy od Sciences, Twarda 51//55, 00-818 Warsaw, Poland
autor
autor
autor
autor

Bibliografia

  • Allison, P.A., Smith, C.R., Kukert, H., Deming, J.W., and Bennett, B.A. 1991. Deep−water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin. Paleobiology 17: 78–89.
  • Amano, K. and Kiel, S. 2007. Fossil vesicomyid bivalves from the North Pacific region. Veliger 49: 270–293.
  • Amano, K. and Little, C.T.S. 2005. Miocene whale−fall community from Hokkaido, northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 215: 345–356.
  • Amano, K., Little, C.T.S., and Inoue, K. 2007. A new Miocene whale−fall community from Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 236–242.
  • Astibia, H., Payros, A., Pereda Superbiola, X., Elorza, J., Berreteaga, A., Etxebarria, N., Badiola, A., and Tosquella, J. 2005. Sedimentology and taphonomy of sirenian remains from the Middle Eocene of the Pamplona Basin (Navarre, western Pyrenees). Facies 50: 463–475.
  • Bennett, B.A., Smith, C.R., Glaser, B., and Maybaum, H.L. 1994. Faunal community structure of a chemoautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. Marine Ecology Progress Series 108: 205–223.
  • Campbell, K.A., Farmer, J.D., and Des Marais, D. 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2: 63–94.
  • Carpenter, K. 1996. A review of short−necked plesiosaur from the Cretaceous of the Western Interior, North America. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 201: 259–287.
  • Deming, J.W., Reysenbach, A.L., Macko, S.A., and Smith, C.R. 1997. Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: bone−colonizing bacteria and invertebrate endosymbionts. Microscopy Research and Technique 37: 162–170.
  • Desbruyères, D., Segonzac, M., and Bright, M. (eds.) 2006. Handbook of Deep−sea Hydrothermal Vent Fauna (second edition). 544 pp. Biologiecentrum der Oberösterreichische Landesmuseum, Linz.
  • Distel, D.L., Baco, A.R., Chuang, E., Morrill, W., Cavanaugh, C., and Smith, C.R. 2000. Do mussels take wooden steps to deep−sea vents? Nature 403: 725–726.
  • Goedert, J.L., Squires, R.L., and Barnes, L.G. 1995. Paleoecology of whale−fall habitats from deep−water Oligocene rocks, Olympic Peninsula, Washington state. Palaeogeography, Palaeoclimatology, Palaeoecology 118: 151–158.
  • Greinert, J., Bohrmann, G., and Elvert, M. 2002. Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850 m water depth. International Journal of Earth Sciences 91: 698–711.
  • Hayami, I. and Kase, T. 1977. A systematic survey of the Paleozoic and Mesozoic Gastropoda and Paleozoic Bivalvia from Japan. The University Museum, The University of Tokyo, Bulletin 13: 1–156.
  • Hikida, Y., Suzuki, S., Togo, Y., and Ijiri, A. 2003. An exceptionally well−preserved fossil seep community from the Cretaceous Yezo Group in the Nakagawa area, Hokkaido, northern Japan. Paleontological Research 7: 329–342.
  • Hogler, J.A. 1994. Speculations on the role of marine reptile deadfalls in Mesozoic deep−sea paleoecology. Palaios 9: 42–47.
  • Jenkins, R.G., Kaim, A., and Hikida, Y. 2007a. Antiquity of the substrate choice among acmaeid limpets from Late Cretaceous chemosynthesis-based communities. Acta Palaeontologica Polonica 52: 369–373.
  • Jenkins, R.G., Kaim, A., Hikida, Y., and Tanabe, K. 2007b. Methane flux dependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology 5: 127–139.
  • Kaim, A., Jenkins, R.G., and Warén, A. (in press). Provannid and provannidlike gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea). Zoological Journal of the Linnean Society.
  • Kanie, Y. and Kuramochi, T. 1996. Description of possibly chemosynthetic bivalves from the Cretaceous deposits of the Obira−cho, northwestern Hokkaido. Science Report of the Yokosuka City Museum 44: 63–68.
  • Kanie, Y. and Nishida, T. 2000. New species of chemosynthetic bivalves, Veiscomya and Acharax, from the Cretaceous deposits of northwestern Hokkaido. Science Report of the Yokosuka City Museum 47: 79–84.
  • Kanie, Y., Nishida, T., Kuramochi, T., and Kawashita, Y. 2000. Chemosynthetic bivalve community discovered from the Cretaceous deposits in Horokanai−cho, northwestern Hokkaido. Science Report of the Yokosuka City Museum 47: 73–78.
  • Kanie, Y., Yoshikawa, Y., Sakai, T., and Kuramochi, T. 1996. Cretaceous chemosynthetic fauna from Hokkaido. Science Report of the Yokosuka City Museum 44: 69–74.
  • Kanie, Y., Yoshikawa, Y., Sakai, T., and Takahashi, T. 1993. The Cretaceous chemosynthetic cold water−dependent molluscan community dicovered from Mikasa City, central Hokkaido. Science Report of the Yokosuka City Museum 41: 31–36.
  • Kase, T. 1984. Early Cretaceous marine and brackish−water Gastropoda from Japan. 263 pp. National Science Museum, Tokyo.
  • Kiel, S. and Goedert, J.L. 2006. Deep−sea food bonanzas: early Cenozoic whale−fall communities resemble wood−fall rather than seep communities. Proceedings of the Royal Society of London Series B−Biological Sciences 273: 2625–2631.
  • Levin, L.A., James, D.W., Martin C.M., Rathburn, A.E., Harris, L.H., and Michener, R.H. 2000. Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Marine Ecology Progress Series 208: 21–39.
  • Lonsdale, P. 1977. Clustering of suspension−feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep−Sea Research 24: 857–863.
  • Martill, D.M., Cruickshank, A.R.I., and Taylor, M.A. 1991. Dispersal via whale bones. Nature 351: 193.
  • Martill, D.M., Cruickshank, A.R.I., and Taylor, M.A. 1995. Speculations on the role of marine reptile deadfalls in Mesozoic deep−sea paleoecology: comment: Palaios 10: 96–97.
  • Nagao, T. 1932. Some Cretaceous Mollusca from Japanese Saghalin and Hokkaido (Lamellibranchiata and Gastropoda). Journal of the Faculty of Science, Hokkaidô Imperial University, Series IV, Geology and Mineralogy 2: 23–50.
  • Nagao, T. 1939. Some molluscan fossils from the Cretaceous deposits of Hokkaido and Japanese Saghalien. Journal of the Faculty of Science, Hokkaidô Imperial University, Series IV, Geology and Mineralogy 4: 214–239.
  • Nagao, T. and Ôtatume, K. 1938. Molluscan fossils of the Hakobuti sandstone of Hokkaidô. Journal of the Faculty of Science, Hokkaidô Imperial University, Series IV, Geology and Mineralogy 4: 31–56.
  • Okada, H. 1983. Collision orogenesis and sedimentation in Hokkaido, Japan. In: M. Hashimoto and S. Uyeda (eds.), Accretion Tectonics in the Circum−Pacific Regions, 91–105. Terra Scientific Publishing Company, Tokyo.
  • Okamoto, T., Matsunaga, G., and Okada, M. 2003. Restudy of the Upper Cretaceous stratigraphy in the Haboro area, northwestern Hokkaido. Journal of Geological Society of Japan 109: 363–382.
  • Paull, C.K., Hecker, B., Commeau, R., Freeman−Lynde, R.P., Neumann, C., Corso, W. P., Golubic, S., Hook, J. E., Sikes, E., and Curray, J. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226: 965–967.
  • Peckmann, J., Campbell, K.A., Walliser, O.H., and Reitner, J. 2007. A Late Devonian hydrocarbon−seep deposit dominated by dimerelloid brachiopods, Morocco. Palaios 22: 114–122.
  • Peckmann, J. and Thiel, V. 2004. Carbon cycling at ancient methane−seeps. Chemical Geology 205: 443–467.
  • Pyenson, N.D and Haasl, D.M. 2007. Miocene whale−fall from California demonstrates that cetacean size did not determine the evolution of modern whale−fall communities. Biology Letters 3: 709–711.
  • Ricqlès, A. de and Buffrénil, V. de 2001. Bone histology, heterochronies and return of tetrapods to life in water: were are we? In: J.−M. Mazin and V. de Buffrénil (eds.), Secondary Adaptations of Tetrapods to Life in Water, 289–310. Verlag Dr. Friedrich Pfeil, München.
  • Riding, R. 2000. Microbial carbonates: the geological record of calcified bacterial−algal mats and biofilms. Sedimentology 47 (Supplement 1): 179–214.
  • Squires, R.L., Goedert, J.L., and Barnes, L.G. 1991. Whale carcasses. Nature 349: 574.
  • Smith, C.R. 2007. Bigger is better: The role of whales as detritus in marine ecosystems. In: J.A. Estes, D.P. DeMaster, D.F. Doak, T.M. Williams, and R.L. Brownel (eds.), Whales, Whaling and Ocean Ecosystems, 286–300. University of California Press, Berkeley.
  • Smith, C.R. and Baco, A.R. 2003. Ecology of whale falls at the deep−sea floor. Oceanography and Marine Biology: an Annual Review 41: 311–354.
  • Smith, C.R., Kukert, H., Wheatcroft, R.A., Jumars, P.A., and Deming, J.W. 1989. Vent fauna on whale remains. Nature 341: 27–28.
  • Spangler, E. and Shapiro, R. 2007. New evidence of bacterial degradation in fossil whale falls: not just a boring tale! GSA Cordilleran Section—103rd Annual Meeting, Bellingham, Washington. http://gsa.confex.com/gsa/2007CD/finalprogram/abstract_121147.htm.
  • Storrs, G.W. 1991. Anatomy and relationships Corosaurus alcovensis (Diapsida: Sauropterygia) and the Triassic Alcova Limestone of Wyoming. Bulletin of the Peabody Museum of Natural History 44: 1–151.
  • Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R., and Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north−west Pacific margin. Cretaceous Research 25: 365–390.
  • Teichert, B.M.A., Bohrmann, G., and Suess, E. 2005. Chemoherms on Hydrate Ridge—Unique microbially−mediated carbonate build−ups growing into the water column. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 67–85.
  • Toshimitsu, S. 1985. Biostratigraphy and depositional facies of the Cretaceous in the upper reaches of the Haboro River, Hokkaido. Journal of Geological Society of Japan 91: 599–618.
  • Tunnicliffe, V. and Juniper, S.K. 1990. Cosmopolitan underwater fauna. Nature 344: 300.
  • Underwood. C.J., Mitchell, S.F., and Veltkamp, C.J. 1999. Microborings in mid−Cretaceous fish teeth. Proceeding of the Yorkshire Geological Society 52: 269–274.
  • Vogel, K. and Marincovich, L. 2004. Paleobathymetric implications of microborings in Tertiary strata of Alaska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 206: 1–20.
  • Warén, A. and Bouchet, P. 1993. New records, species, genera, and a new family of gastropods from hydrothermal vents and hydrocarbon seeps. Zoologica Scripta 22: 1–90.
  • Welles, S.P. 1952. A review of the North American Cretaceous elasmosaurs. Univeristy of California Publications in Geological Sciences 29: 47–144.
  • Wisshak, M., Gektidis, M., Freiwald, A., and Lundälv, T. 2005. Bioerosion along a bathymetric gradient in a cold−temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51: 93–117.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c6a65d7f-6eda-488c-bc8b-62196b6108b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.