PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 48 | 1 |

Tytuł artykułu

EST-SSR DNA polymorphism in durum wheat [Triticum durum L.] collections

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
SSRs derived from EST were molecular markers belonging to the transcribed region of the genome. Therefore, any polymorphism detected using EST-SSRs might reflect the better relationship among species or varieties. Using wheat EST-SSR markers, 60 durum wheat (Triticum durum L.) accessions from seven countries were investigated. Twenty-five primer pairs could amplify successfully in the 60 durum wheat accessions, of which tri-nucleotide repeats were the dominant type, and revealed 26 loci on all seven wheat homologous chromosome groups. A total of 87 eSSR alleles were detected, and the number of alleles detected by a single pair of primers ranged from 1 to 11, with an average of 3.3 alleles per locus. Higher numbers of alleles and PIC were identified on the B genome than those on the A genome.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

48

Numer

1

Opis fizyczny

p.35-42,fig.,ref.

Twórcy

autor
  • Sichuan Agricultural University, Ya'an, Sichuan 625014, China
autor
autor
autor

Bibliografia

  • Allard RW, 1996. Genetic basis of the evolution of adaptedness in plants. Euphatica: 92: 1-11.
  • Almansouri M, Kinet J-M, Lutts S, 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil 231: 243-254.
  • Anderson JA, Churchill GA, Autrique JE, Tanksley SC, Sorrells ME, 1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181-186.
  • Annicchiarico P, Pecetti L, 1995. Morpho- physiological traits to complement grain yield selection under semi-arid Mediterranean conditions in each of the durum wheat types Mediterraneum typicum and syriacum. Euphytica 86: 191-198.
  • Beharav A, Golan G, Levy A, 1997. Evaluation and variation in response to infection with Puccinia striiformis and Puccinia recondita of local wheat landraces. Euphytica 94: 287-293.
  • Belay G, Furuta Y, 2001. Zymogram pattern of α-amylase isozymes in Ethiopian tetraploid wheat landraces: insight into their evolutionary history and evidence of gene flow. Genet Res Crop Evol 48: 507-512.
  • Blake NK, Lehfeldt BR, Lavin M, Talbert LE, 1999. Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat. Genome 42: 351-360.
  • Blanco IA, Rajaram S, Krostad WE, 2001. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci 41: 670-676.
  • Blum A, Golan G, Mayer J, Sinmena B, Shpiler L, Burra J, 1989. The drought response of landraces of wheat from the northern Negev Desert in Israel. Euphytica 43: 87-96.
  • Brown AHD, 1978. Isozymes, plant population genetics structure and genetic conservation. Theor Appl Genet 52: 145-157.
  • Desai RM, Bhatia CR, 1978. Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein concentration. Euphytica 27: 561-566.
  • Elouafi I, Nachit MM, 2004. A genetic linkage map of the Durum Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108: 401-413.
  • Eujayl I, Sorrells M, Baum M, Wolters P, Powell W, 2001. Assessment of genotypie variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119: 39-43.
  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W, 2002. Isolation of EST-derived microsaltellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104: 399-407.
  • Fu YB, Peterson GW, Richards KW, Somers D, DePauw RW, Clarke JM, 2005. Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004. Theor Appl Genet 110: 1505-1516.
  • Gao LF, Tang JF, Li HW, Jia JZ, 2003. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding 12: 245-261.
  • Hoisington D, Khairallah M, Ribaut JM, Skovmand B, Taba S, Warburton M, 1999. Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 99: 8133-8138.
  • Incirli A, Akkaya MS, 2001. Assessment of genetic relationships in durum wheat cultivars using AFLP markers. Genetic Res Crop Evol 48: 233-238.
  • Li W, Zhang DF, Wei YM, Yan ZH, Zheng YL, 2006. Genetic diversity of Triticum turgidum L. based on microsatellite markers. Russ J Genet 42: 311-316.
  • Lotti C, Salvi S, Pasqualone A, Tuberosa R, Blanco A, 2000. Integration of AFLP markers into an RFLP-based map of durum wheat. Plant Breed 119: 393-401.
  • Maccaferri M, Sanguineti MC, Donini P, Tuberosa R, 2003. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107: 783-797.
  • Marino CL, Nelson JC, Lu YU, Sorrells ME, Leroy P, Tuleen NA, et al. 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39: 359-366.
  • Metzgar D, Bytof J, Wills C, 2002. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10: 72-80.
  • Morgante M, Hanafey M, Powell W, 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30: 194-200.
  • Nachit MM, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhilili M, et al. 2001. Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102: 177-186.
  • Pecetti L, Annicchiarico P, Damania AB, 1992. Biodiversity in a germplasm collection of durum wheat. Euphytica 60: 229-238.
  • Peng J, Korol AB, Fahaima T, Roder M, Ronin YI, Li YC, Nevo I, 2000. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: ge- nome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10: 1509-1531.
  • Peng JH, Lapitan NLV, 2005. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Inter Genomics 5: 80-96.
  • Plaschke J, Ganal MW, Roder MS, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001-1010.
  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A, 1996. The comparison of RFLP, RAPD, AFLP and SSR (Microsatellite) markers for germplasm analysis. Mol Breed 2: 225-238.
  • Pujar S, Tamhankar SA, Rao VS, Gupta VS, Naik S, Ranjekar PK, 1999. Arbitrarily primed-PCR based diversity assessment reflects hierarchical groupings of Indian tetraploid wheat genotypes. Theor Appl Genet 99: 868-876.
  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW, 1998. A microsatellite map of wheat. Genetics 149: 2007-2023.
  • Roder MS, Plaschke J, Konig SU, Borner A, Sorrells ME, 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246: 327-333.
  • Rohlf FJ, 1990. NTSYS-pc manual. Exeter Software, Setauket, New York: 28-45.
  • Sharp PJ, Kresis M, Shewry P, Gale MD, 1988. Location of α-amylase sequences in wheat and its relatives. Theor Appl Genet 75: 286-290.
  • Thiel T, Michalek W, Varshney RK, Graner A, 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106: 411-422.
  • Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, Osborn TC, 1994. Comparison of RFLP and RAPD markers to estimate genetic relationships within and among cruciferous species. Theor Appl Genet 88: 973-980.
  • Valkoun JJ, 2001. Wheat pre-breeding using progenitors. Euphytica 119: 17-23.
  • Vavilov NI, 1951. The origin, variation, immunity and breeding of cultivated plants. Chronica Bot 13: 1-351.
  • Wang HY, Liu DC, Yan ZH, Wei YM, Zheng YL, 2005. Cytological characteristics of hybrid F2 population between Triticum aestivum L. and T. durum with reference to wheat breeding. J Appl Genet 46: 365-369.
  • Watanabe N, Sugiyama K, Yamagishi Y, Sakata Y, 2002. Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137: 180-185.
  • Yeh FC, Boyle T, 1997. Population genetic analysis of codominant and dominant markers and quantitative traits. Belg J Bot 129: 157-163.
  • Zhang W, Qu LJ, Gu H, Gao W, Liu M, Chen J, Chen Z, 2002. Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor Appl Genet 104: 099-1106.
  • Zohary D, Feldman M, 1962. Hybridization between amphiploids and the evolution of polyploids in the wheat (Aegilops Triticum) group. Evolution 16: 44-61.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c6784cfd-2b76-4161-9826-409828c6dfda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.