PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 44 | 1 |

Tytuł artykułu

Antifungal activity of sodium chloride on Saprolegnia diclina and Aphanomyces sp.

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sixteen identified and three unidentified species belonging to six genera of zoosporic fungi were isolated from forty water samples which were collected from different fish and fish hatcheries farms at Abbassa city, Sharkiya governorate, Egypt, using sesame seeds baiting technique at 20±2°C. Saprolegnia and Achlya contributed the broadest spectra of species diversity amongst the other genera of zoosporic fungi. Saprolegnia diclina and Aphanomyces sp. were the most prevalent species of zoosporic fungi. The abundance of zoosporic fungal species in these aquacultures was correlated with some physicochemical characteristics of the water samples. The two dominant species of zoosporic fungi were tested for their tolerance of NaCl solution and its impact on some morphological and metabolic activities of these fungi. Saprolegnia diclina tolerated concentrations of NaCl solution till 12000 μg/ml whereas the maximum resistance of Aphanomyces sp. was 8000 μg/ml. The examined morphological aspects of the two studied fungal species, which included the colony diameters, the vegetative hyphae, zoosporogenesis, zoospores discharge, sexual reproductive structures and gemmae formation, were generally affected depending upon the tested fungal species and the applied dose of NaCl solution. The low treatments of NaCl solution were significantly stimulative compared with the control for protease production by S. diclina but higher doses were significantly suppressive. A significant decline in protease activity at all applications was found when Aphanomyces sp. was treated with NaCl solution. The total free amino acids and total protein content of S. diclina and Aphanomyces sp. mycelia were almost significantly increased relative to untreated controls at the low dose of NaCl solution and they were significantly dropped at the higher concentrations by the two zoosporic fungi.

Wydawca

-

Czasopismo

Rocznik

Tom

44

Numer

1

Opis fizyczny

p.125-138,fig.,ref.

Twórcy

autor
  • Assiut University, Assiut, Egypt

Bibliografia

  • Ali E. H. 2005. Morphological and biochemical alterations of oomycete fish pathogen Saprolegnia parasitica as affected by salinity, ascorbic acid and their synergistic action. Mycopathologia 59: 231–243.
  • Bangyeekhun E., Cerenius L., Soderhall K. 2001. Molecular cloning and characterization of two serine proteinase genes from the crayfish plague fungus, Aphanomyces astaci. J. Invertebr. Pathol. 77: 206–216.
  • Bly J.E., Lawson L.A., Dale D.J., Szalai A.J., Durborow R.M., Clem L.W. 1992. Winter saprolegniosis in channel catfish. Dis. Aqu. Organ. 13: 155–164.
  • Bruno D.W., Wood B.P. 1999. Saprolegnia and other Oomycetes. (In:) P. T. K. Wood, D. W. Bruno (eds). Fish Diseases and Disorders. 3. Viral, Bacterial and Fungal Infections. CABI Publishing, Wallingford, Owon, United Kingdom. pp. 599–659.
  • Coker W.C. 1923. The Saprolegniaceae, with notes on water molds. Univ. Chapel Hill, North Carolina Press, 201 pp.
  • Daugherty J., Evans T.M., Skillom T., Watson L.E., Money N.P. 1998. Evolution of spore release mechanisms in the Saprolegniaceae (Oomycetes): evidence from a phylogenetic analysis of internal transcribed spacer sequences. Fungal Gen. Biol. 24: 354–363.
  • Delgado C.L., Wada N., Rosegrant M.W., Meijer S., Ahmed M. 2003. Outlook for Fish to 2020: Meeting Global Demand. Report by the International Food Policy Research Institute.
  • Dieguez-Uribeondo J., Cerenius L. 1988. The inhibition of extracellular proteinases from Aphanomyces spp by three different proteinase inhibitors from crayfish blood. Mycol. Res. 102: 820–824.
  • Emerson R. 1941. An experimental study of the life cycles and taxonomy of Allomyces. Lloydia 4: 77–144.
  • Faye R., McQuilken M.P., Bain R.A. 2006. Effects of water potential on mycelial growth, sclerotial production, and germination of Rhizoctonia solani from potato. Mycol. Res. 110: 725–733.
  • Harrison J.L., Jones E.P. 1975. The effect of salinity on sexual and asexual sporulation of members of the Saprolegniaceae. Trans. Br. Mycol. Soc. 65: 389–394.
  • Hatai K., Egusa S. 1979. Studies on visceral mycosis of salmonids fry-II. Characteristics of fungi isolated from the abdominal cavity of amago salmon fry. Fish Pathol. 11: 187–193.
  • Hussein M.M.A., Hatai K. 2002. Pathogenicity of Saprolegnia species associated with outbreaks of salmonid saprolegniosis in Japan. Fisheries Sci. 68: 1067–1072.
  • Jackson M.L. 1958. Soil chemical analysis. Printice-Hall, Inc., Englewood Cliffs, N. J. 498 pp.
  • Jeffrey C., Lord, Roberts W.D. 1985. Effects of salinity, pH, organic solutes, anaerobic conditions, and the presence of other microbes on production and survival of Lagenidium giganteum (Oomycetes: Lagenidiales) zoospores. J. Invertebr. Pathol. 45: 331–338.
  • Johnson J.W.Jr. 1956. The genus Achlya: Morphology and taxonomy. University of Michigan, Ann Arbor. 180 pp.
  • Johnson J.W.Jr. 1971. Aquatic fungi of Iceland: Pythium. Mycologia 63: 517–536.
  • Kane J., Fischer J.B. 1973. The influence of sodium chloride on the growth and production of macroconidia of Trichophyton mentagrophytes. Mycopath. Mycol. Appl. 50: 127–143.
  • Karling J.S. 1977. Chytridiomycetarum Iconographia. Vaduz, J. Cramer. 414 pp.
  • Katz D., Rosenberg R.F. 1971. Hyphal wall synthesis in Aspergillus nidulans. Effect of protein synthesis inhibition and osmotic shock on chitin insertion and morphogenesis. J. Bacteriol. 108: 184–190.
  • Khallil A.M. 1984. Studies on aquatic fungi in El-Ibrahimia canal, Egypt. M. Sc. Thesis Bot. Dept. Fac. Sci. Assiut University, Egypt.
  • Khodabandeh S., Abtahi B. 2006. Effects of sodium chloride, formalin and iodine on the hatching success of common carp, Cyprinus carpio, eggs. J. Appl. Ichthyology 22: 54–56.
  • Khulbe R.D., Bisht G.S., Joshi C. 1994. Epizootic infection due to Achlya debaryana in a catfish. Mycoses 37: 61–63.
  • Kirvu Y., Blazer V.S., Vogelbein W.K., Kator H., Shields J.D. 2005. Factors influencing the sporulation and cyst formation of Aphanomyces invadans, etiological agent of ulcerative mycosis in Atlantic menhaden, Brevoortia tyrannus. Mycologia 97: 569–575.
  • Kiziewicz B., Kozłowska M., Goldlewska A., Muszyńska E., Mazalska B. 2004. Water fungi occurrence in the River Suprasl-bath Jurowce near Bialystok. Wiad. Parazytol. 50: 143–150 .
  • Kunitz M. 1947. Crystalline soybean trypsin inhibitor. II. General properties. J. Gen. Physiol. 30: 291–310.
  • Lee Y.P., Takahashi T. 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. Analytical Biochem. 14: 71–77.
  • Leger R.J.St., Charnley A.K., Cooper R.M. 1986. Cuticle-degrading enzymes of entomopathogenic fungi: Synthesis in culture on cuticle. J. Invertebr. Pathol. 48: 85–95.
  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.
  • Martinez-Palacios C.A., Morte J.C., Tello-Ballinas J.A., Toledo-Cuevas M., Ross L.G. 2004. The effects of saline environments on survival and growth of eggs and larvae of Chirostoma estor Jordan 1880 (Pisces: Atherinidae). Aquaculture 238: 509–522.
  • Mert H.H., Dizbay M. 1977. The effect of osmotic pressure and salinity of the medium on the growth and sporulation of Aspergillus niger and Paecilomyces lilacinum species. Mycopathologia 61: 125–127.
  • Mert H.H., Ekmekci S. 1987. The effect of salinity and osmotic pressure of the medium on the growth, sporulation and changes in the total organic acid content of Aspergillus flavus and Penicillium chrysogenum. Mycopathologia 100: 85–89.
  • Meyer F.P. 1991. Aquaculture disease and health management. J. Animal Sci. 69: 4201–4208.
  • Neish A., Hughes G.C. 1980. Diseases of fishes. Fungal Diseases of Fishes. 6. New Jersey, 159 pp.
  • Ogbonna C., Alabi R.O. 1991. Studies on species of fungi associated with mycotic infections of fish in a Nigerian freshwater fish pond. Hydrobiologia 220: 131–136.
  • Piotrowski J.S., Annis S.L., Longcore J.E. 2004. Physiology of Betrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96: 9–15.
  • Paterson R.R.M., Bridge P.D. 1994. Biochemical techniques for filamentous fungi. Int. Mycol. Instit. CAB International Survey, P. 21, UK.
  • Rattan S.S., Muhsin T.M., Ismail A.L.S. 1978. Aquatic fungi of Iraq: Species of Dictyuchus and Calyptralegnia. Sydowia 31: 112–121.
  • Ravishankar J.P., Davis C.M., Davis D.J., MacDonald E., Makselan S.D., Millward L. 2001. Mechanics of solid tissue invasion by the mammalian pathogen Pythium insidiosum. Fungal Gen. Biol. 34: 167–175.
  • Roberts R.B. 1963. A study of the distribution of certain members of the Saprolegniales. Trans. Br. Mycol. Soc. 46: 213–224.
  • Schreck C.B., Fitzpatrick M.L.L., Rach J.J., Jeffrey S.M. 1990. Research to identify effective antifungal agents. Bonneville Power Administration, 21 pp.
  • Schreck C.B., Fitzpatrick M.L.L., Rach J.J., Schreier T.M. 1992. Research to identify effective antifungal agents. Bonneville Power Administration, 30 pp.
  • Scott W.W. 1961. A monograph of the genus Aphanomyces. Virginia Agricult. Exp. Station Tech. Bull. (Blacksburg) 151: 1–95.
  • Seymour R.L. 1970. The genus Saprolegnia. Nova Hedwigia (Beih) 19: 1–124.
  • Smith S.N., Ince E., Armstrong R.A. 1990. Effect of osmotic and matrix potential on Saprolegnia diclina and S. ferax. Mycol. Res. 94: 71–77.
  • Soederhaell K., Unestam T. 1975. Properties of extracellular enzymes from Aphanomyces astaci and their relevance in the penetration process of crayfish cuticle. Physiol. Plant. 35: 140–146.
  • Sparrow F.K. 1960. Aquatic Phycomycetes (2nd ed.). Univ. Michigan Press. Ann. Arbor. 1187 pp.
  • Sterne R.E., Zentmyer G.A., Bingham F.T. 1976. The effect of osmotic potential and specific ions on growth of Phytophthora cinnamomi. Phytopathology 66: 1398–1402.
  • Taylor S.G., Bailey J.E. 1979. Saprolegnia: control of fungus on incubating eggs of pink salmon by treating with sea water. Prog. Fish-Cult. 41: 181–183.
  • Van West P. 2006. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. Mycologist 20: 1–6.
  • Waterstrat P.R., Marking L.L. 1995. Clinical evaluation of formalin cozeltisi, hydrogen peroxide, and sodium chloride for the treatment of Saprolegnia parasitica in fall Chinook salmon eggs. Prog. Fish-Cult. 57: 287–291.
  • Weiland J.J. 2004. Production of protease isozymes by Aphanomyces cochlioides and Aphanomyces euteiches. Physiol. Mol. Plant Pathol. 65: 225–233.
  • Wethered J.M., Jenning D.H. 1985. Major solutes contributing to solute potential of Thraustochytrium aureum and T. roseum after growth in media of different salinities. Trans. Br. Mycol. Soc. 85: 439–446.
  • Willoughby L.G., Pickering A.D. 1977. Viable Saprolegniaceae spores on the epidermis of the salmonid fish Salmo trutta and Salvelinus alpinus. Trans. Br. Mycol. Soc. 68: 91–95.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c60ca17a-e579-4964-925c-5eb873411515
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.