PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 05 | 2 |

Tytuł artykułu

The properties of plant [Cucurbita pepo] nuclear matrix preparations are strongly affected by the preparation method

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Nuclear matrices from White bush (Cucurbita pepo var. patisoniana) cell nuclei were isolated. Three different preparation methods were used. The methods were: I- the method of Berezney and Coffey [1] involving extraction of cell nuclei with 2M NaCl and Triton X-100 (called the “High Salt” method); II- the same with pre-treatment of cell nuclei with 0.5 mM CuSO4 (stabilisation step); III- the method of Mirkovitch et al. [2] involving lithium diiodosalicylate (LIS) extraction (called the “LIS” method). Each of the three methods was used in three variants of nucleic acid removal: restriction enzymes, endogenous nucleases and DN-ase I with RN-ase A digestion. Nuclear matrices were analysed for protein and DNA content, residual RNA and DNA synthesis activity, endonucleolytic activity and specific SAR DNA binding properties. The lowest protein and DNA content and endonucleolytic activity was found in nuclear matrices isolated by the “High Salt” method. It also had the lowest RNA and DNA synthesis and endonucleolytic activity. The highest protein and DNA content, and RNA and DNA synthesis and endonucleolytic activity was found in nuclear matrices isolated by the “LIS” method. When exogenous SAR DNA binding activity was compared, the highest was found in nuclear matrices isolated by the “High Salt” method while the lowest was in the “LIS” method preparation. Nuclear matrices isolated by the “High Salt” method with a stabilisation step always displayed average values of assayed parameters. These data indicate that the biological residual properties of a nuclear matrix preparation strongly depend on the method used.

Wydawca

-

Rocznik

Tom

05

Numer

2

Opis fizyczny

p.151-169,fig.

Twórcy

autor
  • University of Wroclaw, Przybyszewskiego Str.63-77, 51-148 Wroclaw, Poland

Bibliografia

  • 1. Berezney, R. and Coffey, D. S. Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60 (1974) 1410-1417.
  • 2. Mirkovitch, J., Mirault, M. E. and Laemmli, U. K. Organisation of the higher-ordered chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39 (1984) 223-232.
  • 3. Belgarder, P., Siegel, A. J. and Berezney. R. A comprehensive study on the isolation and characterisation of the HeLa S3 nuclear matrix. J. Cell Sci. 98 (1991) 281-291.
  • 4. Cardenas, M. E., Laroche, T. and Gasser, S. M. The composition and morphology of yeast nuclear scaffolds. J. Cell Sci. 96 (1990) 439-450.
  • 5. Eberharter, A., Grabher, A., Gastraunthaler, G., and Loidl, P. Nuclear matrix of the lower eukaryote Physarium polcephanum and the mammalian epithelial LLC-PK1 cell line A comprehensive investigation of different preparation procedures. Eur. J. Biochem. 212 (1993) 573-580.
  • 6. Altieri, F., Maras, B., Eufemi, M., Ferraro, A., and Turano, C. Purification of a 57 kDa nuclear matrix protein associated with thiol: protein-disulphide oxidoreductase and phospholipase C activities. Biochem. Biophys. Res. Commun. 194 (1993) 992-1000.
  • 7. Berezney, R. and Coffey, D. S. Nuclear matrix. Isolation and characterisation of a framework structure from rat liver nuclei. J. Cell Biol. 73 (1979) 616-637.
  • 8. Bouvier, D., Hubert, J., Seve, A. P., and Bouteille, M. RNA is responsible for the 3-dimensional organisation of nuclear matrix proteins in HeLa cells. Biol. Cell. 43 (1982) 143-146.
  • 9. Cockerill, P. N. and Garrard, W. T. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in the region containing topoisomerase II sites. Cell 44 (1986) 273-282.
  • 10. Ferraro, A., Cervoni, L., Eufemi, M., Altieri, F. and Turano, C. Comparison of DNA-protein interactions in intact nuclei from avian liver and erythrocytes: a cross-linking study. J. Cell. Biochem. 62 (1996) 495- 505.
  • 11. Fey, E. G., K. M. Wan and Penman, S. Epithelial cytoskeletal framework and nuclear matrix - intermediate filament scaffold: three-dimensional organisation and protein composition. J. Cell Biol. 98 (1984) 1973-1984.
  • 12. Herlan, G. and Wunderlich, F. Isolation of nuclear protein matrix from Tetrahymena macronuclei. Cytobiologie 13 (1976) 291-296.
  • 13. Hodge, R. D., Mancini, P., Davis, F. M. and Heywood, P. Nuclear matrix of HeLa S3 cells. J. Cell Biol. 72 (1977) 194-208.
  • 14. Kaufmann, S. H., Coffey, D. S. and Shaper, J. H. Considerations in the isolation of rat liver nuclear matrix, nuclear envelope, and pore complex lamina. Exp. Cell Res. 132 (1981) 105-123.
  • 15. Kaufmann, S. H., Gibson, W. and Shaper, J. H. Characterisation of the major polypeptides of rat liver nuclear envelope. J. Biol. Chem. 258 (1983)2710-2719.
  • 16. Kaufmann, S. H., Coffey, D. S. and Shaper, J. H. Consideration in the isolation of rat liver nuclear matrix, nuclear envelope and pore complex lamina. Exptl. Cell Res. 132 (1984) 104-123.
  • 17. Long, B. H. and Ochs, R. L. Nuclear matrix, hnRNA and snRNA in Friend Erythroleukemia nuclei depleted of chromatin by ionic strength EDTA. Biol. Cell 48 (1983) 89-98.
  • 18. Luderus, M. E., de Graaf, A., Mattia, E., den Blaauwen, J. L., Grande, M. A., de Jong, L. and van Driel, R. Binding of matrix attachment regions to lamin B1. Cell 70 (1992) 948-959.
  • 19. Pieck, A. C. M., Rijken, A. A. M. and Wanka, F. Nuclear matrix and chromosome scaffold preparations of in vitro cultured bovine liver cells have two protein in common. FEBS Lett. 212 (1987) 276-280.
  • 20. Sevalievic, L., Petrovic, M., Poznanovic, G. and Konstantinovic, M. On the similarity between the nuclear network and chromatin nonhistone proteins of sea urchin embryos. Cell. Mol. Biol. 27 (1981) 147-157.
  • 21. Smith, C. and Berezney R. DNA polymerase is tightly bound to the nuclear matrix of actively replicating liver cells. Biochem. Biophys. Res. Commun. 97 (1980) 1541-1547.
  • 22. Smith, H. C., Puvion, E., Buchholtz, L. A. and Berezney, R. Spatial distribution of DNA loop attachment and replicational sites in the nuclear matrix. J. Cell Biol. 99 (1984) 1794-1802.
  • 23. Stick, R. and Hanusen, P. Immunological analysis of nuclear lamina proteins. Chromosoma 80 (1980) 219-236.
  • 24. Weitz, W. and Loidl, P. In situ preparation of nuclear matrix of Physarium polycephanum: ultrastructural and biochemical analysis of different matrix isolation procedures. J. Cell Sci. 90 (1988) 621-628.
  • 25. Mirkovitch, J., Gasser, S. M. and Laemmli, U. K. Scaffold attachment of DNA loops in metaphase chromosomes. J. Mol. Biol. 200 (1988) 101-110.
  • 26. Gasser, S. M. and Laemmli, U. K. A glimpse at chromosomal order. Trends Genet. 3 (1987) 16-22.
  • 27. He, D., Nicerson, J. A. and Penman, S. Core filaments of the nuclear matrix. J. Cell Biol. 110 (1990) 569-580.
  • 28. Nakayasu, H. and Berezney, R. Nuclear matrix: Identification of the major nuclear proteins. Proc. Natl. Acad. Sci. USA 88 (1991) 10312-10316.
  • 29. Pieck, A. C. M., Rijken, A. A. M. and Wanka, F. Protein composition of the chromosomal scaffold and interphase nuclear matrix. Chromosoma (Berl.) 91 (1985) 137-144.
  • 30. Fisher, P. A. Preparation of karyoskeletal protein-enriched fractions from Drosophila melanogaster cells and tissues, in Methods In Cell Biology. 1998. p. 23-32.
  • 31. Fisher, P. A. Effects of thermal stress on the karyoskeleton - insights into the possible role of karyoskeletal elements in DNA replication and transcription, in The Eukaryotic Nucleus. Molecular Biochemistry and Macromolecular Assemblies, P. R. Strauss and S. H. Wilson, Editors. 1998.
  • 32. Kaufmann, S. H. and Shaper, J. H. A subset of non-histone nuclear proteins reversibly stabilized by the sulfhydryl cross-linking reagent tetrathionate. Polypeptides of the internal nuclear matrix. Exp. Cell Res. 155 (1984) 477-495.
  • 33. Verheijen, R., van Venrooij, W. and Ramaekers, F. The nuclear matrix: structure and composition. J. Cell Science 90 (1988) 11-36.
  • 34. van der Velden, H. M. W. and Wanka, F. The nuclear matrix - Its role in the spatial organization and replication of eucaryotic DNA. Mol. Biol. Reports 12 (1987) 69-77.
  • 35. Breyne, P., van Montague, M., Depicker, A. and Gheysen, G. Characterization of a plant scaffold attachment region in DNA fragment that normalizes transgene expression in Tobacco. The Plant Cell 4 (1992) 463-471.
  • 36. Hall, G., Allen, G. C., Loer, D. S., Thompson, W. F. and Spiker, S. Nuclear scaffolds and scaffold-attachment regions in higher plants. Proc. Natl. Acad. Sci. USA 88 (1991) 9320-9324.
  • 37. Rzepecki, R., Bułaj, G. and Szopa, J. Endonuclease tightly associated with plant nuclear matrix affected DNA synthesis in vitro. J. Plant Physiol. 134 (1989) 364-369.
  • 38. Rzepecki, R., Szmidziński, R., Bode, J. and Szopa, J. The 65 kDa protein affected endonuclease tightly associated with plant nuclear matrix. J. Plant Physiol. 139 (1992) 284-288.
  • 39. Rzepecki, R. The complex of the 32 kD endonuclease and 65 kD protein from plant nuclear matrix preferentially recognizes the plasmid containing SAR DNA element. J. Plant Physiol. 144 (1994) 479-484.
  • 40. Rzepecki, R., Markiewicz, E. and Szopa, J. Identification of the proteins responsible for SAR DNA binding in nuclear matrix of Cucurbita pepo. Acta Biochim. Polon. 42 (1995) 171-176.
  • 41. Rzepecki, R., Markiewicz, E., Adamiec, R. and Szopa, J. Interaction of the Pisum sativum nuclear matrix proteins with SAR DNA. Acta Biochim. Polon. 42 (1995) 75-82.
  • 42. Rzepecki, R. and Szopa, J. Immunoglobulins anti-endonuclease 32 kDa from Cucurbita pepo var patissonina affect process of DNA synthesis. Acta Biochim. Polon. 42 (1995) 177-182.
  • 43. Slatter, R. E., Dupree, P. and Gray, J. C. A scaffold-associated DNA region is located downstream of the pea plastocyanin gene. The Plant Cell 3 (1991) 1239-1250.
  • 44. Moreno Diaz De La Espina, S., Barthellemy, I. and Cerezuela, M. A. Isolation and ultrastructural characterisation of the residual nuclear matrix in a plant cell system. Chromosoma 100 (1991) 110-117.
  • 45. Bradford, M. M. A rapid and sensitive protein assay detecting low quantities of protein utilizing principle of protein - dye binding. Anal. Biochem. 72 (1976) 248-254.
  • 46. Tsutsui, K., Tsutsui, K., Sakurai, H., Shohmori, T. and Oda, T. Levels of topoisomerase II and DNA polymerase are regulated independently in developing neuronal nuclei. Biochem. Biophys. Res. Commun. 138 (1986) 1116-1122.
  • 47. Szopa, J., Rzepecki, R., Wojtkiewicz, B. and Szmidziński, R. An endonuclease closely associated with DNA-dependent RNA polymerase II. FEBS Lett. 189 (1985) 301-304.
  • 48. Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C. and Kohwi-Shigematsu, T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255 (1992) 195-197.
  • 49. Rudnicki, K., Rzepecki, R. and Szopa, J. Rearrangement of the nuclease-inhibitor complex components within cells of white bush treated with phytohormone. J. Plant Physiol. 132 (1988) 658-663.
  • 50. Klehr, D., Maass, K. and Bode, J. Scaffold-attached regions from the human interferon beta domain can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry 30 (1991) 1264-1270.
  • 51. Bodnar, J. W., Hanson, P. J. Polvino-Bodnar, M. Zempsky, W. and Ward, D. C. The terminal regions of adenovirus and minute virus of mice DNAs are preferentially associated with the nuclear matrix in infected cells. J. Virol. 63 (1989) 4344-4353.
  • 52. Engelhardt, P. Plagens, U. Zbarsky, I. B. and Filatowal, S. Granules 25-30 nm in diameter: Basic constituent of the nuclear matrix chromosomes scaffold and nuclear envelope. Proc. Natl. Acad. Sci. USA 79 (1982) 6937-6940.
  • 53. Gasser, S. M. and Laemmli, U. K. The organization of chromatin loops: Characterization of a scaffold attachment site. EMBO J. 5 (1986) 511-518.
  • 54. Lam, K. S. and Kaspar, C. B. Electrophoretic analysis of three major nuclear envelope polypeptides. J. Biol. Chem. 254 (1979) 11713-11720.
  • 55. Nakayasu, H. and Ueda, K. Small nuclear RNA protein complex anchors on the actin filaments in bovine lymphocyte nuclear matrix. Cell Struc. Funct. 9 (1984) 317-325.
  • 56. Kirov, N. and Tsanev, R. Activated murine alfa-globin gene is not preferentially associated with the nuclear matrix. Int. J. Biochem. 18 (1986) 155-159.
  • 57. Yuan, J., Simons, G. Blobel, G. and Georgatos, S. D. Binding of lamin A to polynucleosomes. J. Biol. Chem. 266 (1991) 9211-9215.
  • 58. Smith, D., Ochs, R. C. Fernandez, E. A. and Spector, D. L. Macromolecular domains containing nuclear protein p107 and U-snRNP protein p28; further evidence for an in situ nuclear matrix. Mol. Cell. Biochem. 70 (1986) 151-168.
  • 59. Fisher, P. A. and Lin, L. McConnell, M. Greenleaf, A. Lee, J.-M. and Smith, D. E. Heat shock-induced appearance of RNA polymerase II in karyoskeletal protein-enriched (nuclear "matrix") fractions correlates with transcriptional shutdown in Drosophila melanogaster. J. Biol. Chem. 264 (1989) 3464-3469.
  • 60. Neri, L. M., Martelli, A. M. and Maraldi, N. M. Redistribution of DNA topoisomerase II beta after in vitro stabilization of human erythroleukemic nuclei by heat or Cu++ revealed by confocal microscopy. Microsc. Res. Tech. 36 (1997) 179-187.
  • 61. McConnell, M., Whalen, A. M., Smith, D. E. and Fisher, P. A. Heat shock-induced changes in the structural stability of proteinaceous karyoskeletal elements in vitro and morphological effects in situ. J. Cell Biol. 105 (1987) 1087-1098.
  • 62. Rzepecki, R., Bogachev, S. S., Kokoza, E., Stuurman, N., and Fisher, P. A. In vivo association of lamins with nucleic acids in Drosophila melanogaster. J. Cell Science 111 (1998) 121-129.
  • 63. Rzepecki, R., and Fisher, P. A. During Both Interphase and Mitosis, Drosophila DNA Topoisomerase II Interacts with DNA as well as RNA Through the Protein’s C-Terminal Domain. J. Cell Science 113 1635- 1647.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c35ed8ed-98c3-43c1-9fcc-df25f8bc01bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.