PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1999 | 44 | 1 |

Tytuł artykułu

Histometry and surface area of the alimentary canal of Apodemus flavicollis

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The alimentary canals of five males weighing 31.5-42.8 g and five females - 31.2-43.3 g - of Apodemus flavicollis (Melchior, 1834) were studied. Lengths of the alimentary canals segments were measured together with thicknesses of tissues forming their wall and the internal and external areas of the segments were then calculated. In stomach there is a proventriculus structured like an esophagus. The surface layer of epithelial cells becomes cornified (52% of epithelial lamina thickness), which supports mechanical treatment of food. In the fundus of the stomach, there is a strongly-developed glandular layer (38% of wall thickness). The internal area of small intestine dominates the digestive-absorptive area of alimentary canal (70%). The large intestine is second largest segment in internal area - 22%. The sizes of the alimentary canal, ie length and external and internal areas, are 11-16% larger in females, which shows the female adjustment to reproduction. The relative value of digestive absorptive area (mm2/g) reaches 206.8 mm2/g (females) and 164.0 mm2/g (males). The size of the alimentary canal of A. flavicollis reflects an accomodation of the canal to the digestion and absorption of the animal diet rich in calories, especially of insects which constitute the main component of the diet.

Wydawca

-

Czasopismo

Rocznik

Tom

44

Numer

1

Opis fizyczny

p.29-36,fig.

Twórcy

  • Nicholas Copernicus University, Gagarina 9, 87-100 Torun, Poland

Bibliografia

  • Barry R. E. 1976. Mucosal, surface areas and villous morphology of the small intestine of small mammals: functional interpretations. Journal of Mammalogy 57: 273-290.
  • Barry R. E, 1977, Length and absorptive surface area apportionment of segments of the hindgut for eight species of small mammals. Journal of Mammalogy 58: 419-420.
  • Borkowska A. 1995. Seasonal changes in gut morpholgy of the striped field mouse (Apodemus agrarius). Canadian Journal of Zoology 73: 1095-1099.
  • Brody S. 1945. Bioenergetics and growth. Reinhold Publ. Co. New York: 1-1023.
  • Buchalczyk A. 1972. Seasonal variations in the activity of shrews. Acta Theriotogica 17: 221-243.
  • Burck H. Ch. 1975. Technika histologiczna. Państwowy Zakład Wydawnictw Lekarskich, Warszawa: 1-234. [In Polish]
  • Derting T. L. and Noakes E. B. 1995. Seasonal changes in gut capacity in the white-footed mouse (Peromyscus leucopus) and meadow vole (Microtus pennsylvanicus). Canadian Journal of Zoology 73: 243-252.
  • Fisher R. B. and Parsons D. S. 1950. The gradient of mucosal surface area in the small intestine of the rat. Journal of Anatomy 84: 272-282.
  • Gębczyńska Z. and Gębczyński M, 1971, Length and weight of the alimentary tract of root vole. Acta Theriologica 16: 359-369.
  • Golley F. B. 1960. Anatomy of the digestive tract of Microtus. Journal of Mammology 41: 89-99.
  • Gould S. J. 1966. Allometry and size in ontogeny and phylogeny, Biological Reviev 41: 587-640,
  • Green D. A. and Millar J. S. 1986. Changes in gut dimensions and capacity of Peromyscus manicu- latus relative to diet quality and energy needs. Canadian Journal of Zoology 65: 2159-2162,
  • Gross J. E., Wang Z. and Wunder B. A. 1985. Effects of food quality and energy needs: Changes in gut morphology and capacity of Microtus ochrogaster, Journal of Mammalogy 66: 661-667.
  • Krstić R. V. 1991. Human microscopic anatomy. An atlas for students of medicine and biology. Springer-Verlag, Berlin; 1-616.
  • Obrtel R. 1973. Animal food of Apodemus flavicollis in a Lowland Forest. Zoologicke Listy 22: 15-30.
  • Obrtel R. 1974. Comparison of animal food eaten by Apodemus flauicollis and Clethrionomys glareolus in a Lowland Forest. Zoologicke Listy 23: 35-46.
  • Permezel N. C. and Webling D, D. 1971. The length and mucosal surface of the small and large gut in young rats. Journal of Anatomy 108: 295—296.
  • Przystalski A. 1987. [Morphometry of alimentary canal in some passerine birds (Passeriformes}]. Przegląd Zoologiczny 31: 139-157. [In Polish]
  • Slocombe R. F., Todhunter R. J. and Stick J. A. 1982. Quantitative ultrastructural anatomy of esophagus in different regions in the horse: Effects of alternate methods of tissue processing. American Journal of Veterinary Research 43: 1137-1142.
  • Snipes R. L. 1982. Anatomy of the caecum of the Gerbil Meriones unguiculatus (Mammalia, Rodentia, Cricetidae). Zoomorphology 100: 189-202.
  • Snipes R. L. 1994. Morphometric methods for determining surface enlergement at the microscopic level in the large intestine and their application. [In: The digestive system in mammals. Food, form and function. D. J, Chivers and P. Langer, edsj. Cambridge University Press, Cambridge: 446,
  • Stelmasiak M. (ed) 1979. Mianownictwo anatomiczne. Państwowy Zakład Wydawnictw Lekarskich, Warszawa: 1-330. [In Polish]
  • Wawrzyniak M. (ed) 1974. Polskie mianownictwo histologiczne. Państwowy Zakład Wydawnictw Lekarskich, Warszawa: 1-180. [In Polish]
  • Weiner J. 1989. Metabolic constraints to mammalian energy budgets. Acta Theriologica 34: 3-35.
  • Weiner J. 1992. Physiological limits to sustainable energy budgest in birds and mammals ecological implications. Trends in Ecology & Evolution 11: 384-388.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-c0914410-6fc0-470b-a6eb-f9f12a09168d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.