PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 3 |

Tytuł artykułu

Interaction of membrane skeletal proteins with membrane lipid domain

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The object of this paper is to review briefly the studies on the interaction of red blood cell membrane skeletal proteins and their non-erythroid analogues with lipids in model systems as well as in natural membranes. An important question to be addressed is the physiological significance and possible regulatory molecular mechanisms in which these interactions are engaged.

Wydawca

-

Rocznik

Tom

47

Numer

3

Opis fizyczny

p.565-578

Twórcy

  • University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
autor

Bibliografia

  • 1. Mohandas, N. & Evans, E. (1994) Mechanochemical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23, 787-818.
  • 2. Stokke, B.T., Mikkelsen, A. & Elgsaeter, A. (1986) The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechanochemical properties. Eur. Biophys. J. 13, 203-218.
  • 3. Svetina, S., Iglic, A., Kraij-Iglic, V. & Zeks, B. (1996) Cytoskeleton and red cell shape. Cell. Mol. Biol. Lett. 1, 67-75.
  • 4. Sahr, K., Laurila, P., Kotula, L., Scarpa, A., Coupal, E., Leto, T., Linnenbach, A., Winkelmann, J., Speicher, D., Marchesi, V., Curtis, P. & Forget, B. (1990) The complete cDNA sequences of human erythroid a-spectrin. J. Biol. Chem. 265, 4434-4443.
  • 5. Winkelmann, J., Chang, J.-G., Tse, W., Scarpa, A., Marchesi, V. & Forget, B. (1990) Full-length sequence of the cDNA for human erythroid b-spectrin. J. Biol. Chem. 264, 11827-11832.
  • 6. Yan, Y.E., Winograd, A., Viel, T., Cronin, S., Harrison, S. & Branton, D. (1993) Crystal structure of the repetitive segments of spectrin. Science 262, 2027-2030.
  • 7. Byers, T. & Branton, D. (1985) Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. U.S.A. 82, 6153-6157.
  • 8. Liu, S.-C., Derick, L.H. & Palek, J. (1987) Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell. Biol. 104, 527-536.
  • 9. Sheetz, M.P. & Sawyer, P. (1978) Triton shells of intact erythrocytes. J. Supramol. Structure 8, 399-412.
  • 10. Bennett, V. & Branton, D. (1977) Selective associations of spectrin with the cytoplasmic surface of human erythrocyte membranes. Quantitative determination with purified (32P) spectrin. J. Biol. Chem. 252, 2753-2763.
  • 11. Yu, J. & Goodman, S.R. (1979) Syndeins: Spectrin-binding protein(s) from the human erythrocyte membrane. Proc. Natl. Acad. Sci. U.S.A. 76, 2340-2344.
  • 12. Bennett, V. & Stenbuck, P. (1979) The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membrane. Nature 280, 468-473.
  • 13. Bennett, V. & Stenbuck, P. (1980) Association between ankyrin and the cytoplasmic domains of band 3 isolated from human erythrocyte membrane. J. Biol. Chem. 255, 6424-6432.
  • 14. Pinder, J.C., Chung, A., Reid, M.E. & Gratzer, W.B. (1993) Membrane attachment sites for the membrane cytoskeletal protein 4.1 of the red blood cell. Blood 82, 3482-3488.
  • 15. Marfatia, S.M., Lue, R.A., Branton, D. & Chishti, A.H. (1994) In vitro binding studies suggest a membrane-associated complex between erythroid p55, protein 4.1, and glycophorin C. J. Biol. Chem. 269, 8631-8634.
  • 16. Goodman, S.R., Krebs, K.E., Whitfield, C.F., Riederer, B.M. & Zagon, I.S. (1988) Spectrin and related molecules. CRC Crit. Rev. Biochem. 23, 171-234.
  • 17. Hartwig, J.H. (1994) Actin-binding proteins 1: Spectrin superfamily. Protein Profile 1, 706­778.
  • 18. Sweet, C. & Zull, J.E. (1970) Interaction of erythrocyte-membrane protein, spectrin, with model membrane systems. Biochem. Biophys. Res. Commun. 41, 135-141.
  • 19. Juliano, R.L., Kimelberg, H.K. & Papahadjopoulos, D. (1971) Synergistic effect of membrane protein (spectrin) and Ca2+ on Na+ permeability of phospholipid vesicles. Biochim. Biophys. Acta 241, 894-905.
  • 20. Isenberg, G., Kenna, J.G., Green, N.M. & Gratzer, W.B. (1981) Binding of hydrophibic ligands to spectrin. FEBS Lett. 129, 109-112.
  • 21. Kahana, E., Pinder, J.C., Smith, K. & Gratzer, W.B. (1992) Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites. Biochem. J. 282, 75-80.
  • 22. Sikorski, A.F., Michalak, K., Bobrowska, M. & Kozubek, A. (1987) Interaction of erythrocyte spectrin with amphipathic coumpounds. Stud. Biophys. 121, 20-26.
  • 23. Bitbol, M., Dempsey, C., Watts, A. & Devaux, P. (1989) Weak interaction of spectrin with phosphatidylcholine-phosphatidylserine mul- tilayers: A 3H and 31P NMR study. FEBS Lett. 244, 217-222.
  • 24. Sikorski, A.F. (1988) Interaction of spectrin with hydrophobic agaroses. Acta Biochim. Polon. 35, 19-27.
  • 25. Haest, C.W.M. (1981) Interactin of spectrin with membrane intrinsic domain. Biochim. Biophys. Acta 694, 331-352.
  • 26. Sikorski, A.F. & Kuczek, M. (1985) Labelling of erythrocyte spectrin in situ with phenylisothiocyanate. Biochim. Biophys. Acta 820, 147-153.
  • 27. Sikorski, A.F., Kuczek, M., Nyczka, Z. & Kubiak, Z.J. (1987) Hydrophobic labelling of spectrin in erythrocytes using arylisothiocyanates. Biomed. Biochim. Acta 46, 76-82.
  • 28. Sikorski, A.F. & Jezierski, A. (1987) The effect of spectrin on the erythrocyte membrane fluidity. Studia Biophys. 113, 193-201.
  • 29. Michalak, K., Bobrowska, M. & Sikorski, A.F. (1993) Interaction of bovine erythrocyte spectrin with aminophospholipid liposomes. Gen. Physiol. Biophys. 12, 163-170.
  • 30. Mombers, C., van Dijck, P., van Deenen, L.L.M., deGier, J. & Verkleij, A. (1979) The interaction of spectrin-actin and synthetic phospholipids. II. The interaction with phosphatidylserine. Biochim. Biophys. Acta 551, 271-281.
  • 31. Mombers, C., DeGier, J., Demel, R. & van Deenen, L.L.M. (1980) Spectrin-phospholipid interaction. A monolayer study. Biochim. Biophys. Acta 603, 52-62.
  • 32. Schubert, D., Herbst, F., Marie, H. & Rudloff, V. (1981) Interactions of the isolated spectrin peptides (bands 1 and 2) with phosholipid monolayers. Protides of Biological Fluids. Proceedings of29th Colloquium (Peeters, H., ed.) Pergamon Press, Oxford, New York, Toronto, Paris, Frankfurt, Sydney.
  • 33. Bialkowska, K., Lesniewski, J. Nietubyc, M. & Sikorski, A.F. (1999) Interaction of spectrin with phospholipids is inhibited by isolated erythrocyte ankyrin. Cell. Mol. Biol. Lett. 4, 203-218.
  • 34. Maksymiw, R., Sui, S., Gaub, H. & Sackmann, E. (1987) Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae. Biochemistry 26, 2983-2990.
  • 35. Cohen, A.M., Liu, S.C., Derick, L.H. & Palek, J. (1986) Ultrastructural studies of the interaction of spectrin with phosphatidylserine liposomes. Blood 68, 920-926.
  • 36. DeWolf, C., McCauley, P. & Pinder, J.C. (1996) Regulation of the mechanical properties of the red cell membrane by protein-protein and protein-lipid interactions. Cell. Mol. Biol. Lett. 1, 89-96.
  • 37. Sikorski, A.F., Michalak, K. & Bobrowska, M. (1987) Interaction of spectrin with phospholipids. Quenching of the intrinsic fluorescence by phospholipid suspensions. Biochim. Biophys. Acta 904, 55-60.
  • 38. Bialkowska, K., Zembron, A. & Sikorski, A.F. (1994) Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. Biochim. Biophys. Acta 1191, 21-26.
  • 39. O'Toole, P.J., Morrison, I.E.G. & Cherry, R.J. (2000) Investigations of spectrin-lipid interactions using fluoresceinphosphatidylethanolamine as a membrane probe. Biochim. Biophys. Acta 1466, 39-46.
  • 40. Michalak, K., Bobrowska, M. & Sikorski, A.F. (1990) Investigation of spectrin binding to phospholipid vesicles with the use of isoindole fluorescent probe. Thermal properties of bound and unbound protein. Gen. Physiol. Biophys. 9, 615-624.
  • 41. Sikorski, A.F., Kozubek, A. & Szopa, J. (1988) Proteolysis of spectrin in the presence of phospholipid suspensions with trypsin and pronase. Acta Biochim. Polon. 35, 71-82.
  • 42. Mombers, C. (1982) Investigations on spectrin-lipid interactions in model membranes. PhD Thesis, University of Utrecht.
  • 43. Michalak, K., Bobrowska, M., Bialkowska, K., Szopa, J. & Sikorski, A.F. (1994) Interaction of erythrocyte spectrin with some nonbilayer phospholipids. Gen. Physiol. Biophys. 13, 57-62.
  • 44. Pauly, J.R., Bankert, R.B. & Repasky, E.A. (1986) Immunofluorescent patterns in lymphocyte cell lines. J. Immunol. 136, 246-253.
  • 45. Langner, M., Repasky, E.A. & Hui, S.-W. (1992) Relationship between membrane lipid mobility and spectrin distribution in lymphocytes. FEBS Lett. 305, 197-205.
  • 46. Goodman, S.R., Zagon, I.S. & Kulikowski, R.R. (1981) Identification of spectrin-like proteins in nonerythroid cells. Proc. Natl. Acad. Sci. U.S.A. 78, 7570-7574.
  • 47. Bennett, V., Davis, J. & Fowler, W.E. (1982) Brain spectrin, a membrane associated protein related in structure and function to erythrocyte spectrin. Nature 299, 126-131.
  • 48. Winkelmann, J. & Forget, B. (1993) Erythroid and nonerythroid spectrins. Blood81, 3173­3185.
  • 49. Wasenius, V.-M., Saraste, M., Salven, P., Eramaa, M., Holm, L. & Lehto, V.-P. (1989) Primary structure of the brain b-spectrin. J. Cell Biol. 108, 79-93.
  • 50. Moon, R.T. & McMahon, A. (1990) Generation of diversity in nonerythroid spectrins. J. Biol. Chem. 265, 4427-4433.
  • 51. Ma, Y., Zimmer, W.E., Riederer, B.M., Bloom, B.L., Barker, J.E., Goodman, S.R. & Goodman, S.M. (1993) The complete amino acid sequence for brain beta spectrin (beta fodrin): Relationship to globin sequences. Brain Res. Mol. Brain Res. 18, 87-99.
  • 52. Hu, R., Watanabe, M. & Bennett, V. (1992) Characterization of human brain cDNA encoding the general isoform of b-spectrin. J. Biol. Chem. 264, 18715-18722.
  • 53. Speicher, D.W. & Marchesi, V.T. (1984) Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311, 177-180.
  • 54. Pollerberg, G.E., Burridge, K., Krebs, K.E., Goodman, S.R. & Schachner, M. (1987) The 180 kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res. 250, 227-236.
  • 55. Somunen, R.T., Leong, A.S., Vaaranieni, J.P., Fernando, S.S. & Eskalinen, S.M. (1999) Immunolocalization of the fodrin, E-cadherin, and beta-catenin adhesion complex in infiltrating ductal carcinoma of the breast-comparison with an in vitro model. J. Pathol. 187, 416-423.
  • 56. Riederer, B.M. & Goodman, S.R. (1990) Association of brain spectrin isoforms with microtubules. FEBS Lett. 277, 49-52.
  • 57. Frappier, T., Derancourt, J. & Pradel, L. (1992) Actin and neurofilament binding domain of brain spectrin b subunit. Eur. J. Biochem. 205, 85-91.
  • 58. Frapier, T., Stetzkowski Marden, F. & Pradel, L. (1991) Interaction of domains of neurofilament light chain and spectrin. Biochem. J. 275, 521-527.
  • 59. Aunis, D. & Bader, M.-F. (1988) The cytoskeleton as a barrier to exocytosis in secretory cells. J. Exp. Biol. 139, 253-266.
  • 60. Landis, D.M., Hall, A.K., Weinstein, L.A. & Reese, T.S. (1988) The organization of the cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201-209.
  • 61. Sikorski, A.F., Terlecki, G., Zagon, I.S. & Goodman, S.R. (1991) Synapsin I mediated interaction of brain spectrin with small synaptic vesicles. J. Cell Biol. 114, 313-318.
  • 62. Sikorski, A.F. & Goodman, S.R. (1991) The effect of synapsin I phosphorylation upon binding synaptic vesicles to spectrin. Brain Res. Bull. 27, 195-198.
  • 63. Sikorski, A.F., Sangerman, J., Goodman, S.R. & Critz, S.D. (2000) Spectrin (bSpIIS1) is an essential component of synaptic transmission. Brain Res. 852, 161-166.
  • 64. Ziemnicka-Kotula, D., Xu, J., Gu, H., Potempska, A., Kim, S., Jenkins, E.C., Trenkner, E. & Kotula, L. (1998) Identification of a candidate human spectrin Src homology 3 domain-binding protein suggests a general mechanism of associations of tyrosine kinases with the spectrin-based membrane skeleton. J. Biol. Chem. 273, 13681-13692.
  • 65. De Matteis, M.A. & Morrow, J.S. (2000) Spectrin tethers and mesh in the biosynthetic pathway. J. Cell. Sci. 113, 2331-2343.
  • 66. Diakowski, W. & Sikorski, A.F. (1994) Brain spectrin interacts with phospholipids. Acta Biochim. Polon. 41, 153-154.
  • 67. Diakowski, W. & Sikorski, A.F. (1995) Interaction of brain spectrin (fodrin) with phospholipids. Biochemistry 34, 13252-13258.
  • 68. Diakowski, W., Prychidny, A., Swistak, M., Nietubyc, M., Bialkowska, K., Szopa, J. & Sikorski, A.F. (1999) Brain spectrin (fodrin) interacts with phospholipids as revealed by intrinsic fluorescence quenching and monolayer experiments. Biochem. J. 338, 83-90.
  • 69. Lombardo, C.R., Weed, S.A., Kennedy, S.P. Forget, B.G. & Morrow, J.S. (1994) bII spectrin (fodrin) and bIS2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). J. Biol. Chem. 269, 29212-29219.
  • 70. Musacchio, A., Gibson, T., Rice., Thompson, J. & Saraste, M. (1993) The PH domain. A comon piece in the structural patchwork of signaling proteins. Trends Biochem. Sci. 18, 343-348.
  • 71. Saraste, M. & Hyvonen, M. (1995) PH domain. A fact file. Curr. Opin. Struct. Biol. 5, 403-408.
  • 72. Wang, D.-S. & Shaw, G. (1995) The association of the C-terminal region of beta I sigma II spectrin to brain membranes is mediated by a PH domain, does not require membrane proteins and coincides with a inositol-1,4,5-trisphosphate binding site. Biochem. Biophys. Res. Commun. 217, 608-615.
  • 73. Wang, D.-S., Miller, R., Shaw, R. & Shaw, G. (1996) The pleckstrin homology domain is targeted to the plasma membrane in vivo. Biochem. Biophys. Res. Commun. 225, 420-426.
  • 74. Riederer, B.M., Zagon, I.S. & Goodman, S.R. (1986) Brain spectrin (240/235) and brain spectrin(240235E): Two distinct subtypes with different localization within mammalian neural cells. J. Cell Biol. 102, 2088-2097.
  • 75. Steiner, J., Ling, E. & Bennett, V. (1987) Nearest neighbor analysis for brain synapsin I. Evidence from in vitro reassociation assays for association with membrane protein(s) and the Mr = 68000 neurofilament subunit. J. Biol. Chem. 262, 905-914.
  • 76. Parra, M., Gascard, P., Walensky, L.D., Gimm, J.A., Blackshaw, S., Chan, N., Takakuwa, Y., Berger, T., Lee, G., Chasis, J.A., Snyder, S.H., Mohandas, N. & Conboy, J.G. (2000) Molecular and functional characterization of protein 4.1B, a novel member of the protein 4.1 family with high level, focal expression in brain. J. Biol. Chem. 275, 3247-3255.
  • 77. Gascard, P., Lee, G., Coulombel, L., Auffray, I., Lum, M., Parra, M., Conboy, J.G., Mohandas, N. & Chasis, J.A. (1998) Characterization of multiple isoforms of protein 4.1R expressed during erythroid terminal differentiation. Blood 92, 4404-4414.
  • 78. Discher, D.E., Winardi, R., Schischmanoff, P.O., Parra, M., Conboy, J.G. & Mohandas, N. (1995) Mechanochemistry of protein 4.1's spectrin-actin-binding domain: Ternary complex interactions, membrane binding, network integration, structural strengthening. J. Cell Biol. 130, 897-907.
  • 79. Hemming, N.J., Anstee, D.J., Staricoff, M.A., Tanner, M.J., Mohandas, N. (1995) Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J. Biol. Chem. 270, 5360-5366.
  • 80. Marfatia, S.M., Morais-Cabral, J.H., Kim, A.C., Byron, O. & Chishti, A.H. (1997) The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis. J. Biol. Chem. 272, 24191-24197.
  • 81. Sato, S.B. & Ohnishi, S. (1983) Interaction of a peripheral protein of the erythrocyte membrane, band 4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles. Eur. J. Biochem. 130, 19-25.
  • 82. Rybicki, A.C., Heath, R., Lubin, B. & Schwartz, R.S. (1988) Human erythrocyte protein 4.1 is a phosphatidylserine binding protein. J. Clin. Invest. 81, 255-260.
  • 83. Cohen, A.M., Liu, S.C., Lawler, J., Derick, L., Palek, J. (1988) Identification of the protein 4.1 binding site to phosphatidylserine vesicles. Biochemistry 27, 614-619.
  • 84. Shiffer, K.A., Goerke, J., Duzgunes, N., Fedor, J. & Shohet, S.B. (1988) Interaction of erythrocyte protein 4.1 with phospholipids. A monolayer and liposome study. Biochim. Biophys. Acta 937, 269-280.
  • 85. Mc Kiernan, A.E., MacDonald, R.I., MacDonald, R.C. & Axelrod, D. (1997) Cytoskeletal protein binding kinetics at planar phospholipid membranes. Biophys. J. 73, 1987-1998.
  • 86. Bennett, V. & Lambert, S. (1999) Physiological roles of axonal ankyrins in survival of premyelinated axons and localization of voltage-gated sodium channels. J. Neurocytol. 28, 303-318.
  • 87. Chauchan, V.S., Tuvia, S., Buhusi, M., Bennett, V. & Grant, A.O. (2000) Abnormal cardiac Na+ channel properties and QT heart rate adaptation in neonatal ankyrin (B) knockout mice. Circul. Res. 86, 441-447.
  • 88. Bouley, M., Tian, M.Z., Paisley, K., Shen, Y.C., Malhorta, J.D. & Hortsch, M. (2000) The L1-type cell adhesion molecule neuroglian influences the stability of neural ankyrin in the Drosophila embryo but not its axonal localization. J. Neurosci. 20, 4515-4523.
  • 89. Bialkowska, K. (1995) Relationship between ankyrin and lipid interactions with spectrin. PhD Thesis, University of Wroclaw.
  • 90. Bialkowska, K., Zembron, A. & Sikorski, A.F. (1994) Ankyrin shares binding site with phospholipids on erythrocyte spectrin. Acta Biochim. Polon. 41, 155-157.
  • 91. Sikorski, A.F. & Bialkowska, K. (1996) Interactions of spectrins with membrane intrinsic domain. Cell. Mol. Biol. Lett. 1, 97-104.
  • 92. Lazarides, E. & Woods, C. (1989) Biogenesis of the red blood cell membrane skeleton and the control of erythroid morphogenesis. Annu. Rev. Cell. Biol. 5, 427-452.
  • 93. Bodine, M., Birkenmeier, C.S. & Barker, J.E. (1984) Spectrin-deficient inherited hemolytic anemias in the mouse: characterization by spectrin synthesis and mRNA activity in reticulocytes. Cell 37, 721-728.
  • 94. Peters, L.I., Birkenmeier, C.S. & Barker, J.E. (1992) Fetal compensation of the hemolytic anemia in mice homozygous for the normoblastosis (nb) mutation. Blood 80, 2122-2127.
  • 95. Yi, S., Liu, S.-C., Derick, L.H., Murray, J., Barker, J.E., Cho, M.R., Palek, J. & Golan, D.E. (1997) Red cell membranes of ankyrin-deficient nb/nb mice lack band 3 tetramers but contain normal skeletons. Biochemistry 36, 9596-9604.
  • 96. Lu, P., Soong, C.-J. & Tao, M. (1985) Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J. Biol. Chem. 260, 14958-14964.
  • 97. Southgate, C.D., Chishti, A.H., Mitchell, B., Yi, S.J. & Palek, J. (1996) Targeted disruption of the murine band 3 gene results in spherocytosis and severe hemolytic anemia despite a normal membrane skeleton. Nature Genet. 14, 227-230.
  • 98. DeWolf, C., McCauley, P., Sikorski, A.F., Winlove, P.C., Bailey, A., Kahana, E., Pinder, J.C. & Gratzer, W.B. (1997) Interaction of dystrophin fragments with model membranes. Biophys. J. 72, 2599-2604.
  • 99. Nunomura, W., Takakuwa, Y., Parra, M., Conboy, J.G. & Mohandas, N. (2000) Ca2+-dependent and Ca2+-independent calmodulin binding sites in erythrocyte protein 4.1. Implications for regulation of protein 4.1 interactions with transmembrane proteins. J. Biol. Chem. 275, 6360-6367.
  • 100. Beck, K.A., Buchanan, J.A., Malhorta, V. & Nelson, W.J. (1994) Golgi spectrin: Identification of an erythroid beta-spectrin homolog associated with the Golgi complex. J. Cell Biol. 127, 707-723.
  • 101. Stankewich, M.C., Tse, W.T., Peters, L.L., Ch'ng, Y., John, K.M., Stabach, P.R., Devarjan, P., Morrow, J.S. & Lux, S.E. (1998) A widely expressed bIII spectrin associated with Golgi and cytoplasmic vesicles. Proc. Natl. Acad. Sci. U.S.A. 95, 14158-14163.
  • 102. Stabach, P.R. & Morrow, J.S. (2000) Identification of bV spectrin, a mammalian ortholog of Drosophila beta H spectrin. J. Biol. Chem. 275, 21385-21395.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bfa25820-095a-4225-b3c9-a16d4f522f71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.