PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 4B |

Tytuł artykułu

Polymorphom of sexually different cucumber [Cucumis sativus L.] NIL lines

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Isolations of polymorphic sequences of two pairs of the NIL lines of cucumber (Cucumis sativus L.), which differ with respect to sex, were carried out using the subtraction hybridization methods of DSC (Differential Subtraction Chain) and GDDSC (Genetically Directed DSC). 266 DSC tags were isolated from the entire genome region, and 38 GDDSC tags were isolated from the region containing the sex genes. Based on the obtained results, the methods used may be considered highly effective. The attained sequences, like 11 AFLP clones obtained earlier [Witkowicz, J. et al. Cell. Mol. Biol. Lett. 8 (2003) 375- 381], were characterized by analyzing their hybridization with differential (dhaom) and subtractive cDNA libraries (cDNAsubtractom) from 1- to 2- mm floral buds of the same lines, and by the sequencing of 28 tags. A high average degree of homology was found to exist in the genpolom to dhom and cDNAsubtractom, particularly in the case of "dominant" (when the tester used was a line in which the sex of the plants was dependent upon the dominant allele). This indicates a significant share of coding sequences in the polymorphic genomic tags as well as their share in flower formation. Many of these sequences originate from the sex gene region. Analysis of the sequenced tags showed their interesting composition, including many organelle sequences which transferred into the nucleus, and coding sequences that may participate in flower development, including sex formation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

09

Numer

4B

Opis fizyczny

p.919-933,ref.

Twórcy

autor
  • Warsaw University, Nowoursynowska 166, 02-787 Warsaw, Poland
autor
autor
autor

Bibliografia

  • 1. Lisitsyn, N., Lisitsyn, N. and Wigler, M.H. Cloning the differences between two complex genomes. Science 259 (1993) 946-951.
  • 2. Witkowicz, J., Urbańczyk-Wochniak, E. and Przybecki, Z. AFLP marker polymorphism in cucumber (Cucumis sativus l.) Near isogenic lines differing in sex expression. Cell. Mol. Biol. Lett. 8 (2003) 375-381.
  • 3. Kubicki, B. New sex types in cucumber and their uses in breeding work. XIXth International Horticultural Congress Warszawa 11-18 September (1974), 475-485.
  • 4. Greenbaum, D., Luscombe, N.M., Jansen, R., Qian, J. and Gerstein, M. Interrelating different types of genomics data, from proteome to secretome: 'Oming in on function' 2002. http://bioinfo.mbb.yale.edu/e-print/omes-genomeres/text.pdf
  • 5. Luo, J.H., Puc, J.A., Slosberg, E.D., Yao, Y., Bruce, J.N., Wright, T.C., Becich, M.J. and Parsons, M. Differential subtraction chain, a method for identifying differences in genomic DNA and mRNA. Nucleic Acids Res. 27e (1999) 24e, i-viii
  • 6. Lisitsyn, N.A., Segre, J., Kusumi, K., Lisitsyn, N.M., Nadeau, J.H., Frankel, W.N., Wigler, M.H. and Lander, E.S. Direct isolation of polymorphic marcers linked to a trait by genetically directed representational difference analysis. Nat. Genet. 6 (1994) 57-63.
  • 7. Sambrook, J., Fritsch, E.F. and Maniatis, T. Molecular cloning. A laboratory manual. Ed.II Ford N., Nolan C., Ferguson M. (Cold Spring Harbor Laboratory Press N.Y.), 1989.
  • 8. Urbańczyk-Wochniak, E., Filipecki, M. and Przybecki, Z. A useful protocol for in situ RT-PCR on plant tissues. 7 Cell. Mol. Biol. Lett. (2002) 7-18.
  • 9. Kowalczyk, M.E. Analiza porównawcza produktów ekspresji genów w pąkach kwiatowych ogórka (Cucumis sativus L.) Doctoral thesis 2004 Warsaw University of Agriculuture, Department of Plant Genetics, Breeding and Biotechnology.
  • 10. Przybecki, Z., Kowalczyk, M.E., Siedlecka, E., Urbańczyk-Wochniak, E. and Malepszy, S. The isolation of cDNA clones from cucumber (Cucumis sativus L.) floral buds coming from plants differing in sex. Cell. Mol. Biol. Lett. 8 (2003) 421-438.
  • 11. Malepszy, S., Burza, W. and Śmiech, M. Characterization of a cucumber (Cucumis ativus L.) somaclonal variant with paternal inheritance. J. Appl. Genet. 37 (1996) 65-78.
  • 12. Lilly, J.W., Bartoszewski, G., Malepszy, S. and Havey M.J. A major deletion in the cucumber mitochondrial genome sorts with the MSC phenotype. Curr. Genet. 40 (2001) 144-151.
  • 13. Zhao, X. and Chen, F. Enhancing the technology base for rice improvement. http://farrer.riv.csu.edu.au/rice2001/research/res-03.htm.
  • 14. Hoisington, D. and Kanapiu, F. Key results from Applied Biotechnology Center (ABC) - Mexico. www.africancrops.net/
  • 15. Jaccoud, D., Peng, K., Feinstein, D. and Kilian A. Diversity arrays: a solid state technology for seguence information independent genotyping. Nucleic Acids Res. 29e (2001) 25e.
  • 16. Gong, Z., Koiwa, H., Cushman, M.A., Ray, A., Bufford, D., Kore-eda, S., Matsumoto, T.K., Zhu, J., Cushman, J.C., Bressan, R.A. and Hasegawa, P.M. Gene that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol. 126 (2001) 363-375.
  • 17. Kowalczyk, M.E. and Przybecki, Z. Construction of differential expression profiles by cDNA - DSC method in cucumber floral buds (Cucumis sativus L.). Pol. Kong Genet. Gdańsk. 7-10 IX (2004).
  • 18. Fujisawa, M., Hayashi, K., Nishio, T., Bando, T., Okada, S., Yamato, K.T., Fukuzawa, H. and Ohyama, K. Isolation of X and Y chromosome-specific DNA markers from a liverwort, Marchantia polymorpha, by representational difference analysis. Genetics 159 (2001) 981-985.
  • 19. Bishop, D.T., Wiliamson, J.A., and Skolnik, M.H. A model for restriction fragment length distributions. Am. J. Hum. Genet. 35 (1983) 795-815.
  • 20. Lisitsyn, N.A. Representational difference analysis. Genome analysis. in: A Laboratory Manual (Green, E.D., Birren, B., Klapholz, S., Myers, R.M. and Hieter, P. Eds) Cold Spring Harb, NY, Cold Spring Harb. Lab. Press, 1997-1999. Volume 4: Mapping Genomes 217-258.
  • 21. Zabaleta, E., Oropeza, A., Jimenes, B., Salerno, G., Crespo, M. and Herrera-Estrella, L. Isolation and characterization of genes encoding chaperonin 60ß from Arabidopsis thaliana. Gene 112 (1992) 175-181.
  • 22. Tsukaya, H., Takahashi, T., Naito, S. and Komeda, Y. Floral organ-specific and constitutive expression of an Arabidopsis thaliana heat-shock HSP 18.2:GUS fusion gene is retained even after homeotic conversion of flowers by mutation. Mol. Gen. Genet. 237 (1993) 26-32.
  • 23. Moris, K., Holmes, L., Cordai, L., Huttley, A., Carre, I. and Jackson, S.D. U don't RING me flowers anymore! Comp. Biochem Physiol. Part A 134 (2003) S1-S237.
  • 24. Martin, W. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 8612-8614.
  • 25. Stegemann, S., Hartmann, S., Ruf, S. and Bock, R. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 8828-8833.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bd6387ac-51d7-498b-9123-6920bedd0e28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.