PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 52 | 4 |

Tytuł artykułu

Microbial biomass versus soil fertility in forest sites

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil chemistry, soil microbial biomass and mineralization rate of organic matter (OM) were estimated on plots, which were set up in Scots pine and Norway spruce forests in southern Poland. The aim of the study was to assess the relations between soil microbial biomass and chemical parameters associated with soil fertility. The size of microbial biomass was found to be significantly correlated with chemical parameters reflecting soil nutritional status (content of base cations, cation exchange capacity, base saturation) and organic matter quality (Corg to macronutrients ratios). In addition, soil microbial biomass appeared to be strongly correlated with OM mineralization rate. These findings point out a distinct relationship between soil fertility and soil microbial biomass, suggesting that microbial biomass measurements provide a valid estimate of soil quality.

Wydawca

-

Rocznik

Tom

52

Numer

4

Opis fizyczny

p.553-561,fig.,ref.

Twórcy

autor
  • Forest Research Instiotute, Sw.Huberta 35 Str., 40-952 Katowice, Poland

Bibliografia

  • Aikio S., Väre H., Strömmer R., 2000 – Soil microbial activity and biomass in the primary succession of a dry heath forest – Soil Biol. Biochem. 32: 1091–1100.
  • Anderson J. P. E., Domsch K. H. 1978 – A physiological method for the quantitative measurement of microbial biomass in soil – Soil Biol. Biochem. 10: 215–221.
  • Anderson T. H., Domsch K. H. 1989 – Ratios of microbial biomass carbon to total organic carbon in arable soils – Soil Biol. Biochem. 4: 471–479.
  • Anderson T. H., Domsch K. H. 1993 – The metabolic quotient for CO₂ (qCO₂) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of the soil – Soil Biol. Biochem. 25: 393–395.
  • Anderson T. H., Joergensen R. G. 1997 – Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH – Soil Biol. Biochem. 29: 1033–1042.
  • Bauchus J., Barthel R. 1995 – Mechanisms for carbon and nutrient release and retention in beech forest gaps. II. The role of soil microbial biomass – Plant a. Soil 168/169: 585–592.
  • Bauchus J., Paré D., Côte L. 1998 – Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest – Soil Biol. Biochem. 30: 1077–1089.
  • Bååth E., Arnebrant K. 1994 – Growth rate and response of bacterial communities to pH in limed and ash treated forest soils – Soil Biol. Biochem. 26: 995–1001.
  • Bååth E., Frostegård A., Pennanen T., Fritze H. 1995 – Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils – Soil Biol. Biochem. 27: 229–240.
  • Beck T., Joergensen R. G., Kandeler E., Makeschin F., Nuss E., Oberholtzer H. R., Scheu S. 1997 – An inter-laboratory comparison of ten different ways of measuring soil microbial C – Soil Biol. Biochem. 29: 1023–1032.
  • FAO 1998 – World reference base for soil resources, Food and Agriculture Organization of the United Nations, Rome, 88 pp.
  • Federer C. A., Turcotte D. E., Smith C. T. 1993 – The organic fraction – bulk density relationship and the expression of nutrient content in forest soils – Can. J. For. Res. 23: 1026–1032.
  • Franzluebbers A. J., Zuberer D. A., Hons F. M. 1995 – Comparison of microbiological methods for evaluating quality and fertility of soil – Biol. Fertil. Soils 19: 135–140.
  • Hackl E., Bachmann G., Zechmeister-Boltenstern S. 2000 – Soil microbial biomass and rhizosphere effects in natural forest stands – Phyton (Austria) 40: 83–90.
  • Herman W. A., McGill W. B., Dormar J. F. 1977 – Effects of initial chemical composition on decomposition of roots of three grass species – Can. J. Soil Sci. 57: 205–215.
  • Insam H., Domsch K. H. 1988 – Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites – Microbial Ecology 15: 177–188.
  • Insam H., Parkinson D., Domsch K. H. 1989 – Influence of macroclimate on soil microbial biomass – Soil Biol. Biochem. 21: 211–221.
  • Jenkinson D. S., Ladd J. N. 1981 – Microbial biomass in soil: measurement and turnover (In: Soil Biochemistry, vol. 5, Eds: E. A. Paul, J. N. Ladds) – Marcel Dekker, New York, pp. 415–471.
  • Kaiser E. A., Mueller T., Joergensen R. G., Insam H., Heinemeyer O. 1992 – Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter – Soil Biol. Biochem. 24: 675–683.
  • Kaye J. P., Hart S. C. 1997 – Competition for nitrogen between plants and soil microorganisms – Trends in Ecology and Evolution. 12: 139–143.
  • Knapp E. B., Eliott L. F., Campbell G. S. 1983 – The interrelations of carbon, nitrogen, and microbial biomass during the decomposition of wheat straw: A mechanistic simulation model – Soil Biol. Biochem. 15: 455–461.
  • Ladd J. N., Amato M., Jocteur-Monrozier L., Gestel M. 1990: Soil microhabitats and carbon and nitrogen metabolism (In: Proceedings of the 14th International Congress on Soil Science) – Kyoto III, pp. 82–87.
  • Leirós M. C., Trasar-Cepeda C., Seoane S., Gil-Sotres F. 2000 – Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of European temperature-humid zone (Galicia, NW Spain): General parameters – Soil Biol. Biochem. 32: 733–745.
  • Mc Gill W. B., Cannon K. R., Robertson J. A., Cook F. D. 1986 – Dynamics of soil microbial biomass and water soluble organic C in Breton L after 50 years of cropping to two rotation – Can. J. Soil Sci. 66: 1–19.
  • Merilä P., Ohtonen R. 1997 – Soil microbial activity in the coastal Norway spruce (Picea abies (L.) Karst.) forests of the Gulf of Bothnia in relation to humus-layer quality, moisture and soil types – Biol. Fertil. Soils 25: 361–365.
  • Michalzik B., Matzner E. 1999 – Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem – Europ. J. Soil Sci. 50: 579–590.
  • Ohtonen R., Aikio S. Väre H. 1997 – On ecological theories in soil biology – Soil Biol. Biochem. 29: 1613–1619.
  • Parr J. F., Papendick R. I. 1978 – Factors affecting the decomposition of crop residues by microorganisms (In: Crop residue management systems, Ed. W. R. Oschwald) – ASA, CSSA, SSSA, Madison, WI, pp. 101–129.
  • Paul E. A., Clark F. E. 1989 – Soil Microbiology and Biochemistry – Academic Press, San Diego, 283 pp.
  • Paustian K., Åger G. I., Bossata E. 1997 – Modelling the role of litter quality on decomposition and nutrient cycling (In: Driven by nature: plant litter quality and decomposition, Eds: G. Cadish, K. E. Giller) – CAB International, Wallingford, pp. 313–335.
  • Persson T., Lundkvist H., Wirén A., Hyvönen T., Wessén B. 1989 – Effects of acidification and liming on carbon and nitrogen mineralization and soil microorganisms in mor humus – Water, Air, Soil Pollut. 45: 77–96.
  • Raubuch M., Beese F. 1995 – Pattern of microbial indicators in forest soils along an European transect – Biol. Fertil. Soils 19: 362–368.
  • Schnürer J., Clarholm M., Rosswall T. 1985 – Microbial biomass and activity in an agricultural soil with different organic matter – Soil Biol. Biochem. 17: 611–618.
  • Santruckova H. 1992 – Microbial biomass, activity and soil respiration in relation to secondary succession – Pedobiologia 36: 341–350.
  • Taylor L. A., Arthur M. A., Yanai R. D. 1999 – Forest floor microbial biomass across a northern hardwood successional sequence – Soil Biol Biochem. 31: 431–439.
  • Vance E. D., Brookes P. C., Jenkinson D. 1987 – An extraction method for measuring microbial biomass carbon – Soil Biol. Biochem. 19: 703–707.
  • Voroney R. P., Van Veen J. A., Paul E. A. 1981 – Organic C dynamics in grassland soils. 2. Model validation and simulation of the long-term effects of cultivation and rainfall erosion – Can. J. Soil Sci. 61: 211–224.
  • Wolters V., Joergensen R. G. 1991 – Microbial carbon turnover in beech forest soils at different stages of acidification – Soil Biol. Biochem. 23: 897–902.
  • Zak D. R., Tilman D., Parmenter R. R., Rice C. W., Fisher F. M., Vose J., Milchunas D., Martin C. W. 1994 – Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study – Ecology 75: 2333–2347.
  • Zwoliński J. 2001 – Reakcja borów sosnowych na kwaśne opady. I. Gleba i aparat asymilacyjny drzew [Response of pine forests to acid deposition. I. The soil and assimilation apparatus of trees] – Prace Inst. Bad. Leś., A 1(912): 113–137. (in Polish, English Summary)
  • Zwoliński J. 2003 – Ocena zagrożenia lasów świerkowych w Beskidzie Ślàskim przez zanieczyszczenia powietrza atmosferycznego [Risk assessment of air pollution impact on spruce forest in the Silesian Beskid Mountains] – Prace Inst. Bad. Leś., A, 1(951): 53–68. (in Polish, English Summary)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bcf88817-0e00-413d-97f5-9e018b60706b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.