PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 53 | 1 |

Tytuł artykułu

A giant boring in a Silurian stromatoporoid analysed by computer tomography

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study describes the largest known Palaeozoic boring trace, Osprioneides kampto igen. et isp. nov., found within a stromatoporoid Densastroma pexisum from the Upper Visby Formation (lower Wenlock, Silurian) on the island of Gotland, Sweden. Differences between the physical properties of the stromatoporoid and the dense micritic infilling of the borings allowed the application of the CT−scan technology for the 2D and 3D−visualisation of this rare trace. The additional application of a stereoscopic technique on these CT images and movies enhances its value for unravelling spatial orientations. This non−destructive method has a great potential for future macroas well as microboring analyses. The trace maker, most likely a worm, infested the hosting colony post−mortem with up to 120 mm long borings measuring 5–17 mm in diameter. Smaller forms of Trypanites and Palaeosabella within the same stromatoporoid preferentially occur in the outer coenosteum and occasionally in abandoned borings of O. kampto. The stratigraphic position of O. kampto follows the “Great Ordovician Biodiversification Event” in time, and reflects the increase in diversity of boring species. Borings with penetration depths of 120 mm are, however, unique findings for the Palaeozoic and were not exceeded until some 260 million years later (Bajocian, Middle Jurassic) when the “Mesozoic Marine Revolution” led to convergent reinventions as a result of enhanced predation, grazing pressure, and ecospace competition.

Wydawca

-

Rocznik

Tom

53

Numer

1

Opis fizyczny

p.149-160,fig.,ref.

Twórcy

autor
  • Friedrich-Alexander Universitat Erlangen-Nurnberg, Loewenichstr.28, D-91054 Erlangen, Germany
autor
autor
autor

Bibliografia

  • Beuck, L. 2002. Biodegradation und Ichnodiversität postmortaler Stadien der Tiefwasserkoralle Lophelia pertusa am Propeller Mound (Porcupine Seabight). 77 pp. Unpublished Masters Thesis, Eberhard−Karls−Universität, Tübingen, Germany.
  • Beuck, L., Vertino, A., Stepina, E., Karolczak, M., and Pfannkuche, O. 2007. Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualised with micro−computed tomography. Facies 53: 157–176.
  • Bromley, R.G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example. In: T.P. Crimes and J.C. Harper (eds.), Trace Fossils. Geological Journal Special Issue 3: 49–90.
  • Bromley, R.G. 1972. On some ichnotaxa in hard substrates, with a redefinition of TrypanitesMägdefrau. Paläontologische Zeitschrift 46: 93–98.
  • Bromley, R.G. 1978. Bioerosion of Bermuda reefs. Palaeogeography, Palaeoclimatology, Palaeoecology 23: 169–197.
  • Bromley, R.G. 2004. A stratigraphy of marine bioerosion. In: D. McIlroy (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publications 228: 455–481.
  • Bromley, R.G. and D’Alessandro, A. 1987. Bioerosion of the Plio−Pleistocene transgression of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia 93: 379–442.
  • Bromley, R.G. and Tendal, O.S. 1973. Example of substrate competition and phototrophism between two clionid sponges. Journal of Zoology 169: 151–155.
  • Bromley, R.G., Beuck, L., and Taddei Ruggiero, E. (in press). Endolithic sponge versus terebratulid brachiopod, Pleistocene, Italy: accidental symbiosis, bioclaustration and deformity. In: M. Wisshak and L. Tapanila (eds.), Current Developments in Bioerosion, 361–368. Springer, Berlin.
  • Calner, M., Jeppsson, L., and Munnecke, A. 2004. The Silurian of Gotland—Part I: Review of the stratigraphic framework, event stratigraphy, and stable carbon and oxygen isotope development. Erlanger geologische Abhandlungen Sonderband 5: 113–131.
  • Clarke, J.M. 1921. Organic dependence and disease: their origin and significance. Bulletin of New York State Museum of Natural History 221–222: 1–113.
  • Cole, A.R. and Palmer, T.J. 1999. Middle Jurassic worm borings, and a new giant ichnospecies of Trypanites from the Bajocian/Dinantian unconformity, southern England. Proceedings of the Geologists’ Association 110: 203–209.
  • Ekdale, A.A. and Bromley, R.G. 2001. Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia 34: 1–12.
  • Golubic, S., Brent, G., and LeCampion, T. 1970. Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting−embedding technique. Lethaia 3: 203–209.
  • Gould, S.J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. 347 pp. W.W. Norton and Co, New York.
  • Harper D.A.T. 2006. The Ordovician biodiversification: Setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 148–166.
  • Hutchings, P.A. and Peyrot−Clausade, M. 2002. The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. Journal of Experimental Marine Biology and Ecology 269: 101–121.
  • James, N.P., Kobluk, D.R., and Pemberton, S.G. 1977. The oldest macroborers: Lower Cambrian of Labrador. Science 197: 980–983.
  • Jeppsson, L. 1997. A new latest Telychian, Sheinwoodian and Early Homerian (Early Silurian) Standard Conodont Zonation. Transactions of the Royal Society of Edinburgh: Earth Sciences 88: 91–114.
  • Kelly, S.R.A. and Bromley, R.G. 1984. Ichnological nomenclature of clavate borings. Palaeontology 27: 793–807.
  • Kershaw, S. 1980. Cavities and cryptic faunas beneath non−reef stromatoporoids. Lethaia 13: 327–338.
  • Kershaw, S. 1984. Patterns of stromatoporoid growth in level−bottom environments. Palaeontology 27: 113–130.
  • Kershaw, S. 1990. Stromatoporoid palaeobiology and taphonomy in a Silurian biostrome on Gotland, Sweden. Palaeontology 33: 681–705.
  • Kiessling, W. 2002. Secular variations in the Phanerozoic reef ecosystem. In: E. Flügel, W. Kiessling, and J. Golonka (eds.), Phanerozoic Reef Patterns. Tulsa, SEPM Special Publications 72: 625–690.
  • Kiessling, W., Flügel, E., and Golonka, J. 1999. Paleoreef maps: Evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bulletin 83: 1552–1587.
  • Kobluk, D.R. and Nemcsok, S. 1982. The macroboring ichnofossil Trypanites in colonies of the Middle Ordovician bryozoan Prasopora: population behaviour and reaction to environmental influences. Canadian Journal of Earth Science 19: 679–688.
  • Kobluk, D.R., James, N.P., and Pemberton, S.G. 1978. Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the Lower Paleozoic. Paleobiology 4: 163–170.
  • Laufeld, S. 1974. Reference localities for palaeontology and geology in the Silurian of Gotland. Sveriges Geologiska Undersökning C705: 1–172.
  • Leymarie, M.A. 1842. Suite du mémoire sur le terrain Crétacé du Département de l’Aube. Mémoires de la Société Géologique de France 5:1–34.
  • Mägdefrau, K. 1932. Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläontologische Zeitschrift 14: 150–160.
  • Mángano, M.G. and Droser, M.L. 2004. The ichnological record of the Ordovician Radiation. In: B.D. Webby, F. Paris, M. Droser, and I.G. Percival (eds.), The Great Ordovician Biodiversification Event, 369–379. Columbia University Press, New York.
  • Mori, K. 1969. Stromatoporoids from the Silurian of Gotland. Part 1. Stockholm Contributions in Geology 19: 1–100.
  • Munnecke, A., Samtleben, C., and Bickert, T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden—relation to similar Palaeozoic and Proterozoic events. Palaeogeography, Palaeoclimatology, Palaeoecology 195: 99–124.
  • Newall, G. 1970. A symbiotic relationship between Lingula and the coral Heliolitesin the Silurian. Geological Journal, Special Issue 3: 335–344.
  • Nield, E.W. 1984. The boring of Silurian stromatoporoids—towards an understanding of larval behaviour in the Trypanites organism. Palaeogeography, Palaeoclimatology, Palaeoecology 48: 229–243.
  • Pemberton, S.G., Kobluk, D.R., Yeo, R.K., and Risk, M.J. 1980. The boring Trypanites at the Silurian–Devonian disconformity in southern Ontario. Journal of Paleontology 54: 1258–1266.
  • Pojeta, J. and Palmer, T.J. 1976. The origin of rock boring in mytilacean pelecypods. Alcheringa 1: 167–179.
  • Rice, M.E. 1969. Possible boring structures of sipunculids. American Zoologist 9: 803–812.
  • Samtleben, C., Munnecke, A., Bickert, T., and Pätzold, J. 1996. The Silurian of Gotland (Sweden): Facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau 85: 278–292.
  • Schönberg, C.H.L. 2001. Estimating the extent of endolithic tissue of a Great Barrier Reef clionid sponge. Senckenbergiana maritima 31: 29–39.
  • Schönberg, C.H.L. and Shields, G. (in press). Micro−computed tomography for studies on Entobia: transparent substrate versus modern technology. In: M. Wisshak and L. Tapanila (eds.), Current Developments in Bioerosion, 147–164. Springer, Berlin.
  • Stel, J.H. and van de Stoep, E. 1982. Interspecifieke relaties en boringen in enige Silurische stromatoporen. Grondboor en Hamer 1: 11–23.
  • Tapanila, L. 2001. Bioerosion in Late Ordovician and Early Silurian tropical carbonate settings of Anticosti Island, Québec, Canada. 152 pp. Unpublished Masters Thesis, School of Graduate Studies, Laurentian University, Sudbury.
  • Tapanila, L. (in press). The medium is the message: imaging a complex microboring (Pyrodendrina cupra igen. and isp. n.) from the early Paleozoic of Anticosti Island, Canada. In: M. Wisshak and L. Tapanila (eds.),Current Developments in Bioerosion, 123–146. Springer, Berlin.
  • Tapanila, L. and Copper, P. 2002. Endolithic trace fossils in Ordovician–Silurian corals and stromatoporoids, Anticosti Island, eastern Canada. Acta Geologica Hispanica 37: 15–20.
  • Tapanila, L., Copper, P., and Edinger, E. 2004. Environmental and substrate control on Paleozoic bioerosion in corals and stromatoporoids, Anticosti Island, Eastern Canada. Palaios 19: 292–306.
  • Taylor, P.D. and Wilson, M.A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth−Science Reviews 62: 1–103.
  • Van der Pers, J.N.C. 1978. Bioerosion by Polydora (Polychaeta, Sedentaria, Vermes) off Helgoland, Germany. Geologie en Mijnbouw57: 465–478.
  • Vermeij, G.J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3: 245–258.
  • Vermeij, G.J. 1993. Evolution and Escalation—An Ecological History of Life. 544 pp. Princeton University Press, Princeton.
  • Wachter, E. and Hayes, J.M. 1985. Exchange of oxygen isotopes in carbon−dioxide—phosphoric acid systems. Chemical Geology 52: 365–374.
  • Webby, B.D., Paris, F., Droser, M., and Percival, I.G. (eds.) 2004. The Great Ordovician Biodiversification Event. 484 pp. Columbia University Press, New York.
  • Wilson, M.A. and Palmer, T.J. 1988. Nomenclature of a bivalve boring from the Upper Ordovician of the Midwestern United States. Journal of Paleontology 62: 306–308.
  • Wilson, M.A. and Palmer, T.J. 2006. Patterns and processes in the Ordovician Bioerosion Revolution. Ichnos 13: 109–112.
  • Yavorsky, V.I. [Âvorski, V.I.] 1929. Silurian Stromatoporoidea [in Russian]. Izvestiâ Geologičeskogo Komiteta 48: 77–114.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bccfc01d-4af7-4b8d-9d0f-bd2b1ad4d77c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.