PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 1 |

Tytuł artykułu

Potato genetically modified by 14-3-3 protein repressio in growing rat diets. Part I: Chemical composition and digestibility of nutrients

Treść / Zawartość

Warianty tytułu

PL
Ziemniaki genetycznie modyfikowane przez represje bialka 14-3-3 w dietach rosnacych szczurow. Czesc I: Sklad chemiczny i strawnosc skladnikow pokarmowych

Języki publikacji

EN

Abstrakty

EN
A study was undertaken to assess the nutritional value of tubers of transgenic lines of potato cv. Desiree with repression of a and c isoforms of 14-3-3 proteins obtained by means of antisense transformations. Isoforms of 14-3-3 protein are responsible for metabolism of carbohydrates, amino acids and calcium. Repression of that protein, i.e. reduction of its synthesis in a potato plant, results in: a decrease in total protein content of tuber with a slight but favourable change in the amino acid profile, enhanced synthesis of starch, small differentiation in contents of minerals – diminished concentrations of Fe, P, and Ca. The 30% addition of dried transgenic potato tubers with repression of isoform a, c as well as a and c of 14-3-3 protein was found not to affect values of digestibility coefficients of nutrients. Repression of 14-3-3 protein was demonstrated to affect diversification of the chemical composition of tuber and contents of nutrients only to a small extent, without diminishing the nutritional value of potato tubers.
PL
Oceniano wartość pokarmową bulw transgenicznych linii ziemniaka odmiany Desiree z represją izoform a i c białka 14-3-3 uzyskanych poprzez transformacje antysensowe. Izoformy białka 14-3-3 są odpowiedzialne za metabolizm węglowodanów aminokwasów i wapnia. Efektem represji tego białka, redukcji poziomu jego syntezy w roślinie ziemniaka jest: zmniejszenie zawartości białka ogólnego w bulwie z niewielką ale korzystną zmianą profilu aminokwasowego, wzrost syntezy skrobi, niewielkie zróżnicowanie zawartości składników mineralnych – zmniejszenie koncentracji Fe, P, Ca. Nie stwierdzono wpływu 30% dodatku suszu z bulw ziemniaków transgenicznych z represją izoformy a, c oraz a i c białka 14-3-3 na wartość współczynników strawności składników pokarmowych. Represja białka 14-3-3 wpłynęła w niewielkim stopniu na zróżnicowanie składu chemicznego bulwy i zawartość składników pokarmowych nie zmniejszając wartości odżywczej bulw ziemniaków.

Wydawca

-

Rocznik

Tom

58

Numer

1

Opis fizyczny

p.125-129,fig.,ref.

Twórcy

  • Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
autor
autor
autor

Bibliografia

  • 1. AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists (15th ed.). 1996, Arlington, USA.
  • 2. Aulrich K., Böhme H., Daenicke R., Halle I., Flachowsky G., Genetically modified feeds in animal nutrition 1st communication: Bacillus thuringiensis (Bt) corn in poultry, pig and ruminant nutrition. Livest. Prod. Sci., 2001, 54, 183–195.
  • 3. Aumaitre A., Aulrich K., Chesson A., Flachowsky G., Piva G., New feeds from genetically modified plants: substantial equivalence, nutritional equivalence, digestibility and safety for animals and food chain. Livest. Prod. Sci., 2002, 74, 233–238.
  • 4. Bergers W.W.A., A rapid quantitative assay for solanidine glycoalkaloids in potatoes and industrial protein. Potato Res., 1980, 23, 105-110.
  • 5. Broll H., Zagon J., Butske A., Lee A., Spiegelberg A., Böhme H., Flachowsky G., The fate of DNA of transgenic inulin synthesizing potato in pigs. J. Anim. Feed Sci., 2005, 14 (Suppl 1), 337–340.
  • 6. Catchpole G.S., Beckmann M., Enot D.P., Mondhe M., Zywicki B., Taylor J., Hardy N., Smith A., King R.D., Kell D.B., Fiehn O., Draper J., Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. PNAS; Proc. Natl. Acad. Sci. USA. 2005, 102/40, 14458–14462.
  • 7. EFSA 2004. Guidance document of the scientific panel on Genetically Modified Organisms for the risk assessment of genetically modified plants and derived food and feed. EFSA Journal 2004, Updated on 7 December 2005, edited version of 28 April 2006, 99, 1-94.
  • 8. Ewen S. W., Pusztai A., Health risks of genetically modified foods. Lancet, 1999, 354, 684.
  • 9. Eggum B.O., A description of the method used at the National Institute of Animal Science. Acta. Aric. Scand. 1968, 18, 127‑131.
  • 10. Flis B., Zimnoch-Guzowska E., Field performance of transgenic clones obtained from potato cv. Irga. J. Appl. Genet., 2000, 41, 81–90.
  • 11. Gazendam I., Oelofse D., Berer D.K., High-level expression of apple PGIP1 is not sufficient to protect transgenic potato against Verticillum dahliae. Physiol. Mol. Plant, 2004, 65, 145–155.
  • 12. Hashimoto W., Momma K., Katsube T., Ohkawa Y., Ishige T., Kito M., Utsumi S., Murata K., Safety assessment of genetically engineered potatoes with designed soybean glycinin: compositional analyses of the potato tubers and digestibility of the newly expressed protein in transgenic potatoes. J. Sci. Food Agric., 1999a, 79, 1607–1612.
  • 13. Hashimoto W., Momma K., Yoon H.J., Ozawa S., Ohkawa Y., Ishige T., Kito M., Utsumi S., Murata K., Safety assessment of transgenic potatoes with soybean glycinin by feeding studies in rats. Biosci. Biotechn. Biochem., 1999b, 63, 1942–1946.
  • 14. Matthews D., Jones H., Gans P., Coates S., Smith L.M., Toxic secondary metabolite production in genetically modified potatoes in response to stress. J. Agric. Food Chem., 2005, 53, 7766‑7776.
  • 15. Missiou A., Kalantidis K., Boutla A., Tzortzakaki S., Tabler M., Tsagris M., Generation of transgenic potato plants highly resistant to Potato virus Y (PVY) through RNA silencing. Mol. Breeding, 2004, 14, 185–197.
  • 16. Moore S., On the determination of cystine as cysteic acid. J. Biol. Chem., 1963, 238, 235-238
  • 17. Novak W.K., Haslberger A.G., Substantial equivalence of antinutrients and inherent plant toxins in genetically modified novel foods. Food Chem. Toxicol., 2000, 38, 473-483.
  • 18. NRC. Nutrient Requirements of Laboratory Animals. National Research Council. (4th Ed.). Washington, DC: National Academy of Sciences. 1996.
  • 19. Szopa J., Wróbel M., Matysiak-Kata I., Świędrych A., The metabolic profile of the 14-3-3 repressed transgenic potato tubers. Plant Sci., 2001, 161, 1075-1082
  • 20. Szopa J., Transgenic 14-3-3 isoforms in plants: the metabolite profiling of repressed 14-3-3 protein synthesis in transgenic potato plants. J. Biochem. Soc. Trans., 2002, 30, 405–410.
  • 21. Świędrych A., Prescha A., Matysiak-Kata I., Biernat J., Szopa J., Repression of the 14-3-3 gene affects the amino acid and mineral composition of potato tubers. J. Agric. Food Chem., 2002, 50, 2137-2142.
  • 22. Zduńczyk Z., Frejnagel S., Fornal J., Flis M., Palacios M.C., Flis B., Zagórski-Ostoja W., Biological response of rat fed diets with high tuber content of conventionally bred and transgenic potato resistant to necrotic strain of potato virus (PVYN). Part I. Chemical composition of tubers and nutritional value of diets. Food Control, 2005, 16, 761–766.
  • 23. Żuk M., Weber R., Szopa J., 14-3-3 protein down-regulates key enzyme activities of nitrate and carbohydrate metabolism in potato plants J. Agric. Food Chem., 2005, 53, 3454-60.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bc4e727d-32a2-42f5-92aa-0b7747bd09a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.