PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 2 |

Tytuł artykułu

Relationships between cell membrane stability, exudate content and infectivity of Bradyrhizobium japonicum strain 639 to boron starved soybean plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The influence of boron starvation on the root exudates content in soybean seedlings (Glycine max. L. Merr.) and the effect of exudates pretreatment on the preinfection processes in symbiotic system Br. japonicum strain 636 and soybean were investigated. Root cell membrane stability of boron starved soybean plants (-B) decreased compared to the control. The concentrations of all analyzed metabolites (reducing sugars, free amino acids, organic acids, soluble phenols and total flavonoids) from root exudates of -B plants were lower than the control concentrations. Analysis of polyphenols after HPLC chromatography of root exudates showed significant difference of peak numbers between chromatograms of exudates obtained from boron starved and from control plants. Bacterial culture treatment with root exudates from -B plants showed decreased growth, chemotaxis and attachment ability toward the host root compared to the control exudate treatments. These changes were accompanied by decreased nodulation and acetylene reduction activity of boron starved soybean plants.

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.171-179,fig.,ref.

Twórcy

autor
  • Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
autor

Bibliografia

  • Barbour W.M., Hattermann D.R., Stacey G. 1991. Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl. Environ. Microbiol., 2635-2639.
  • Bolanos L., Esteban E., Lorenzo C., Fernandez- -Pascual M., Felipe M., Garate A., Bonilla I. 1994.
  • Essentiality of boron for symbiotic dinitrogen fixation in Pea (Pisum sativum) Rhizobium nodules. Plant Physiol., 104:85-90.
  • Bonilla I., Mergold-Villaseńor C.M., Campos M.E., Sanchez N., Perez H., López L., Castrejón L., Sanchez F., Cassab G.I. 1997. The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline-/ proline-rich protein. Plant Physiol., 115: 1329-1340.
  • Brown P.H., Bellaloui N., Wimmer M.A., Bassil E.S., Ruiz J., Hu H., Pfeffer H., Dannel F., Romheld V. 2002 Boron in plant biology. Plant Biol. 4: 205-223.
  • Caetano-Anolles G., Gresshoff P.M. 1991. Plant Genetic Control of Nodulation, Ann. Rev. Microbiol., 45: 345-382.
  • Caetano-Anolles G., Lagares A., Favelukes G. 1989. Adsorption of Rhizobium meliloti to alfalfa roots: Dependence on divalent cations and pH. Plant Soil., 117: 67-74.
  • Caetano-Anolles G., Crist- Estes D.K., Bauer W.D. 1988. Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J. Bacteriol., 3164-3169.
  • Cakmak I., Kurz H., Marschner H. 1995. Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiol. Plant., 95: 11-18.
  • Dagnon S., Edreva A. 2003. Application of pattern recognition method for color assessment of oriental tobacco based on HPLC of polyphenols. International contribution of tobacco research 20, 5: 355- 359.
  • Dubois M., Gilles K., Hamilton J., Robert P., Skith F. 1956. Colorimetric assay for sugars and related compounds in plant tissue. Anal. Chem. 23-24.
  • Gaworzewska E.T., Carlile M.J. 1982. Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants. J Gen. Microbiol., 128: 1179-1188.
  • Georgiev G., Atanasov B., Kalmuckov K., Alexandrova E., Uzunova A. 1996. Assimilates and nutrients partitioning and efficiency of nitrogen fixation of black locust (R.pseudoacacia L.) grown in exess of Cu in soil. Bulg J Plant Physiol., 22, 2-3: 40-55.
  • Halverson L., Stacey G. 1986. Signal exchange in plant-microbe interactions. Microbiol. Rev., 50: 193-225.
  • Hardy R.F., Holstain W.D., Jakson E., Buris R. 1968. The acetylene-ethylene assay for nitrogen fixation: lab and field assay for nitrogen evaluation. Plant Physiol., 43: 1185-1207.
  • Hu H., Brown P. 1994. Localization of boron in cell wall and its association with pectin. Evidence of a structural role of boron in the cell wall. Plant Physiol., 105: 681-689.
  • Hu H., Brown P., Labavitch J.M. 1996. Species variability in boron requirement is correlated with cell wall pectin. J. Exp. Bot., 47, 295: 227-232.
  • Kape R., Parniske M., Werner D. 1991. Chemotaxis of nod gene activity to hydroxycinnamic acids and isoflavonoids. Appl. Environ. Microbiol., 316-319.
  • Kosslak R., Bookland R., Barkey J., Paaren H., Appelbaum E. 1987. Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. PNAS, 84: 7428-7432.
  • Lodeiro A., Lagares A., Martinez E., Favelukes G. 1995. Early interactions of Rhizobium leguminosarum bv. Phaseoli and bean roots: Specificity in the process of adsorption and its requirements on Ca2+ and Mg2+ ions. Appl. Environ. Microbiol., 61, 4: 1571-1579.
  • Marschner H. 1995. Mineral Nutrition in Higher Plants, Acad. Press, N. Y.
  • Matoh T., Kobayashi M. 1998. Boron and calcium essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res earch, 111: 179-190.
  • Muofhe M., Dakora F. 1999. Root phenolic accumulation and loss of autoregulation of root nodule boron in Bambara groundnut (Vigna subtteranea) following boron nutrition and cotyledon exicion. Aust. J. Plant Physiol., 26: 435-441.
  • Perret X., Staehelin Ch., Broughton W. 2000. Molecular basis of symbiotic promiscuity, Microbiol. And Molecul. Biology Reviews, 180-204.
  • Peters N.K., Verma D.P.S. 1990. Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol. Plant-Microbe Interact., 3: 4-8.
  • Pfeffer H., Dannel F., Rom held V. 1998. Are there connection between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron deficient sunflower plants. Physiol. Plant., 104: 479-485.
  • Phillips D., Dakora F., Sande E., Joseph C., Zoń J. 1994. Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts. Plant Soil, 161: 69-80.
  • Pochinok N. 1976. In: Metodi biochimicheskogo analiza rastenii (Rus). Naukova dumka, ed. Okanenko A. S.
  • Premachandra G., Saneoca H., Fujita K., Ogata S. 1992. Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum. J. Exp. Bot., 43, 257: 1569-1576.
  • Redondo-Nietto M., Rivilla R., El-Hamdaoui A., Bonilla I., Bolanos L. 2001. Boron deficiency affect early infection events in the pea-Rhizobiom symbiotic interaction. Aust. J. Plant Physiol., 28: 819-823.
  • Shkolnik M. 1984. Trace elements in Plants. New York, Elsevier.
  • Smith G.B., Wollum II A.G. 1992. Physicochemical and D-galactose-mediated interactions in the attachment of Bradyrhizobium japonicum to roots of Glycine max. Can. J. Microbiol 39: 245-251.
  • Smith G.B., Wollum II A.G. 1991. Bacterial culture history affects the attachment of Bradyrhizobium japonicum to host Glycine max roots. Can. J. Microbiol., 37:730-736.
  • Streeter J.G. 1992. Analysis of apoplastic solutes in the cortex of soybean nodules. Physiol. Plant. 84: 584-592.
  • Vesper S., Bauer W. 1985. Characterization of Rhizobium attachment to soybean roots. Symbiosis 1: 139-162.
  • Wisniewski J.P., Delmotte F.M. 1996. Modulation of carbohydrate binding capacities and attachment ability of Bradyrhizobium sp. (Lupinus) to white lupin roots. Can. J. Microbiol., 42: 234-242.
  • Yamagishi M., Yamamoto Y. 1994. Effect of boron on nodule development and symbiotic nitrogen fixation in soybean plants. Soil Science and Plant Nutrition 40, 2: 265-274.
  • Yemm E, Cocking E. 1955. The determination of amino acids with ninhidrin. Analyst 80: 209-213.
  • Zehirov G., Georgiev G. 2002. Host-specificity of attachment of Br. Japonicum 639 cells to the roots of boron deficient soybean (Glicine max. [L.] Merr) plants related to root cell wall structure. Comp. rend. Acad. Bulg. Sci., 55,5: 65-69
  • Zhishen Y., Mengchang T., Yianming W. 1999. Determination of flavonoids content in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555-559.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bc063aef-fc9d-471f-b0f5-299313715749
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.