PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 4 |

Tytuł artykułu

Antioxidative defense system in lupin roots exposed to increasing concentrations of lead

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Yellow lupin (Lupinus luteus) cv. Juno seedlings exposed to increasing concentrations of Pb²⁺ (50-350 mg l⁻¹) were analysed in respect to its effect on the degradation of lipids, the content of antioxidants (ascorbate, α-tocopherol) and the activity of the ascorbate glutathione cycle enzymes (dehydroascorbate reductase DAR; EC 1.8.5.1 and glutathione reductase GR; EC 1.6.4.2). Lipid peroxidation, expressed as the content of TBArm (thiobarbituric acid reactive metabolites), increased only at 50 and 100 mgl⁻¹ Pb²⁺, whereas at higher lead concentrations it decreased as compared with the control. The level of free fatty acids was not significantly affected as a result of Pb²⁺ exposure, except for 300 mgl⁻¹ Pb²⁺. The content of α-tocopherol increased significantly at the range of concentrations between 150 and 300 mgl⁻¹ and at these concentrations lipid peroxidation was inhibited. Ascorbic acid (AA) and dehydroascorbic acid (DHA) content increased considerably in roots treated with 100 and 150 mgl⁻¹ Pb²⁺. In general the activity of DHAR and GR was stimulated by lead, however at higher Pb²⁺ concentrations (300 and 350 mgl⁻¹) GR revealed lower enzymatic activtty. Our results suggest that in lead-treated roots lipids might be protected against reactive oxygen species (ROS) by lipid-soluble molecules of α-tocopherol and this direct defense seems to be supported by AA as well as the enzymes: DHAR and GR.

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.357-364,fig.,fig.

Twórcy

  • Adam Mickiewicz University, Al.Niepodleglosci 14, 61-713 Poznan, Poland
autor

Bibliografia

  • Arrigoni O., Calabrese G., De Gara L., Bitonti M.B., Liso R. 1997. Correlation between changes in cell ascorbate and growth of Lupinus albus seedtings. J. Plant. Physiol., 150: 302-308.
  • Bhattacharjee S. 1998. Membrane lipid peroxidation, free radical scavengers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biol. Plant., 40: 131-135.
  • Blokhina O., Virolainen E., Fagerstedt K.V. 2003. Antioxidants, oxidative damage deprivation stress: a review. Ann. Bot., 91: 179-194.
  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye bindmg. Anal. Biochem., 72: 248-254.
  • Buege J.A., Aust S.D. 1978. Microsomal lipid peroxidation. Methods Enzymol., 52: 302-310.
  • Cadenas E. 1995. Mechanisms of oxygen activation and reactive oxygen species detoxification. In: Ahmed S (ed) Oxidative stress and antioxidant defenses in biology. Chapman & Hall, ITP An International Thompson Publishing Company: 1-61.
  • Davis B.J. 1964. Disc electrophoresis-II: method and application to human serum proteins. Ann. N Y Acad. Sci., 121: 404-427.
  • Dietz K.J., Baier M., Kramer U. 1999. Free radtcals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. Spring-Verlag, Berlin, Heidelberg: 73-97.
  • Drążkiewicz M., Skórzyńska-Polit E., Krupa Z. 2004. Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. BioMetals, 17: 379-387.
  • Geebelen W., Vangronsveld J., Adriano D.C., Van Poucke L.C., Clijsters H. 2002. Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiol. Plant., 115: 377-384.
  • Gwóźdź E.A., Przymusiński R., Rucińska R., Deckert J. 1997. Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol. Plant., 19: 459-465.
  • Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53: 1-11.
  • Halliwell B., Gutteridge J.M.C. 1989. Free radicals in biology and medicine. ClarendonPress, Oxford: 86-123
  • Hendry G.A.F., Grime J.P. 1993. Methods in comparative plant ecology. Chapman & Hall, ITP An International Thompson Publishing Company: 154-156
  • Kopyra M., Gwóźdź E.A. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem., 41: 1011-1017.
  • Luwe M.W.F., Takahama U., Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol., 101: 969-976.
  • Małecka A., Jarmuszkiewicz W., Tomaszewska B. 2001. Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Bioch. Pol., 48: 687-698.
  • Mishra A., Choudhuri M.A. 1998. Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol. Plant., 41: 469-473.
  • Munne-Bosch S., Alegre L. 2002. The function of to- copherols and tocotrineols in plants. Crit. Rev. Plant. Sci., 21: 31-57.
  • Noctor G., Foyer Ch.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 49: 249-279.
  • Przymusiński R., Rucińska R., Gwóźdź E.A. 1995. The stress-stimulated 16 kDa polypeptide from lupin roots has properties of cytosolic Cu:Zn-superoxide dismutase. Environ. Exp. Bot., 35: 485-495.
  • Pukacki P.M., Kamińska-Rożek E. 2002. Long-term implications of industrial pollution stress on lipids composition in Scots pine (Pinus sylvestris L.) roots. Acta Physiol. Plant., 24: 249-255.
  • Rao M.V., Paliyath G., Ormrod D.P. 1996. Ultravio- let-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol., 110: 125-136.
  • Rucińska R., Gwóźdź E.A. 2005. Influence of lead on membrane permeability and lipoxygenase activity in lupine roots. Biol. Plant., 49: 617-619.
  • Rucińska R., Waplak S., Gwóźdź E.A. 1999. Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol. Biochem., 37: 187-194.
  • Schutzendubel A., Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxldaiive stress and protection by mycorrhization. J. Exp. Bot., 53: 1351-1365.
  • Seregin I.V., Ivanov V.B. 2001. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ. J. Plant. Physiol., 48: 523-544.
  • Shalata A., Neuman P.M. 2001. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J. Exp. Bot., 52: 2207-2211.
  • Tomaszewska B., Tukendorf A., Barałkiewicz D. 1996. The synlhelis of phytochelatins in lupin roots treated with lead ions. The Science of Legumes, 3: 2006-217.
  • Tommasi F., Paciolla C., de Pinto M.C., De Gara L. 2001. A comparative study of glutathione and ascorbate metabolism during germination of Pinuspinea L. seeds. J. Exp. Bot., 52: 1647-1654.
  • Verma S., Dubey R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci., 164: 645-655.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bb99236a-0bb6-46c3-a06d-5fed3ada9272
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.