PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 16 | 2 |

Tytuł artykułu

The motility of bacteria from rhizosphere and different zones of winter wheat roots

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
More than 800 rhizobacterial strains were isolated from winter wheat “rhizosphere” (the soil tightly adhering to the roots), “rhizoplane” (the root surface) and “endorhiza” (the interior of the roots) at different plant growth stages (two leaves, four leaves, flowering and full maturity). The data obtained clearly show that the proportion of motile strains gradually increased from “rhizosphere”, through “rhizoplane”, to “endorhiza”. These results strongly suggest that flagellar motility is an important factor in the colonization of plant roots (especially the root interiors) by bacteria. However, high proportions of nonmotile bacteria among the bacterial isolates from the root surface at four leaves and flowering stages suggest that flagellar motility is not an absolutely necessary bacterial feature in colonization of plant roots. Pseudomonads and enterobacteria were the main motile bacteria, and Cytophaga-Flavobacterium the main nonmotile ones. The role of flagellar motility in plant root colonization is discussed in relation to other bacterial traits.

Wydawca

-

Rocznik

Tom

16

Numer

2

Opis fizyczny

p.301-308,fig.,ref.

Twórcy

autor
  • Institute of Soil Science and Plant Cultivation, State Research Institute, 8 Czartoryskich St., 24-100 Pulawy, Poland
autor

Bibliografia

  • 1. DE WEER T S., VERMEIREN H., MULDERS I.H.M., KUIPER I., HENDRICKX N., BLOENBERG G.V., VANDERLEYDEN J., DE MOT R., LUGTENBERG J.J. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant-Microbe Interact. 15, 1173, 2002.
  • 2. VANDEBROEK A., VANDERLEYDEN J. The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions. Mol. Plant-Microbe Interact. 8, 800, 1995.
  • 3. HOWIE W.J., COOK R.J., WELLER D.M. Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77, 286, 1987.
  • 4. BOWERS J.H., PARKE J.L. Colonization of pea (Pisum sativum L.) taproots by Pseudomonas fluorescens: effect of soil temperature and bacterial motility. Soil Biol. Biochem. 25, 1693, 1993.
  • 5. SCHER F.M., KLOEPPER J.W., SINGLETON C., ZALESKA I., LALIBERTE M. Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacterial motility, chemotaxis, and generation time. Phytopathology 78, 1055, 1988.
  • 6. BOELENS J., WOESTYNE M.V., VERSTRACK W. Ecological importance of motility for the plant growth-promoting rhizopseudomonad strain ANP15. Soil Biol. Biochem. 26, 269, 1994.
  • 7. GERMIDA J.J., SICILIANO S.D., DE FREITAS J.R., SEIB A.M. Diversity of rhizosphere bacteria associated with field grown canola (Brassica napus L.). (in) “Plant Growth-Promoting Rhizobacteria. Present Status and Future Prospects.”- A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, S. Akino (eds.) Sapporo, Japan, pp. 177, 1997.
  • 8. BASHAN Y., HOLGUIN G. Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 60, 2120, 1994.
  • 9. DE WEGER L.A., VAN DERVLUGT C.I.M., WIFJES A.H.M., BAKKER P.A.H.M., SCIPPERS B., LUGTENBERG B. Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol. 169, 2769, 1987.
  • 10. SAKAI M., OZAWA H., FUTAMATA H., MATSUGUCHI T. Effect of calcium ion on spinach root colonization by fluorescent pseudomonads through chemotaxis. Soil Sci. Plant Nutr. 42, 323, 1996.
  • 11. TOYOTA K., IKEDA K. Relative importance of motility and antibiosis in the rhizoplane competence of a biocontrol agent Pseudomonas fluorescens Me1RC 2Rif. Biol. Fert. Soils 25, 416, 1997.
  • 12. CATLOW H.Y., GLENN A.R., DILWORTH M.J. Does rhizobial motility affects its ability to colonize along the legume root? Soil Biol. Biochem. 22, 573, 1990.
  • 13. MAPLESTONE P.A., CAMPBELL R. Colonization of roots of wheat seedlings by bacilli proposed as biocontrol agent against take-all. Soil Biol. Biochem. 21, 543, 1989.
  • 14. KOBUS J., CZABAN J., GAJDA A., MASIAK D., KSIĘŻNIAK A. Wheat rhizosphere microflora and its effect on plant nutrition and some pathogenic fungi. Part 1. Changes of rhizobacterial populations with development of winter wheat. Roczn. Glebozn. 44, 45, 1993.
  • 15. KLOEPPER J.W., SCHIPPERS B., BAKKER P.A.H.M. Proposed elimination of the term endorhizosphere. Phytopathology 82, 726, 1992.
  • 16. HARRIGAN W.F., MCCANCE M.E. Laboratory Methods in Microbiology – Academic Press, London and New York, pp. 6 and 283, 1966.
  • 17. Bergey’s Manual of Systematic Bacteriology. Vol. 1 (1984) N.R. Krieg (ed.); Vol. 2 (1986) P.H.A. Sneath (ed.); Vol. 3 (1989); Vol. 4 (1989) S.T. Wiliams (ed.) Wiliams & Wilkims pp. 2648 1984-89.
  • 18. OKTABA W. Elementy statystyki matematycznej i metodyka doświadczalnictwa. PWN Warszawa, pp 144 and 287, 1966. [In Polish]
  • 19. LYNCH M.J. Development and interaction between microbial communities on the root surface. (in) “Interrelationships between Microorganisms and Plants in Soil” V. Vančura, F.Kunc (eds) Academia Publishing House of the Czechoslovak Academy of Sciences, Prague, Czechoslovakia. pp. 5, 1989.
  • 20. ALEXANDER M. “Introduction to Soil Microbiology”. J. Wiley & Sons, Inc. (eds) US A. p. 446, 1961.
  • 21. ROVIRA A.D., McDOUGALL B. Microbiological and biochemical aspects of the rhizosphere. (in) “Soil Biochemistry” A.D McLaren, G.H. Peterson (eds) Marcel Dekker, Inc. New York, US A. pp. 427, 1967.
  • 22. PHAM QUANG HUN G, ANNAPURNA K. Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice 12, http:/www.clrri.org/en/pub/omonrice 12/12-13.htm, 2004.
  • 23. SATO K., JIANG J.-Y. Gram-negative bacterial flora on the root surface of wheat (Triticum aestivum) grown under different soil conditions. Biol. Fertil. Soils 23, 273, 1996.
  • 24. CAPDEVILA S., MARTINEZ-GRANERO F.M., SANCHEZ-CONTRERAS M., RIVILLA R., MARTIN M. Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology. 150, 3889, 2004.
  • 25. LUGTENBER G B., DEKKERS L. What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol. 1, 9, 1999.
  • 26. HALLMANN J., QUADT-HALLMANN A., MAHAFFEE W.F., KLOEPPER J.W. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43, 895, 1997.
  • 27. DEKKERS L.C., PHOELICH C.C., VAN DER FITS L., LUGTENBERG B.J.J. A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS 365. Microbiology 95, 7051, 1998.
  • 28. DEKKERS L.C., VAN DER BIJ A.J., MULDERS I.H.M., PHOELICH C.C., WENTWOORD A.R., GLANDORF C.M., WIJFFELMAN C.A., LUGTENBERG B.J.J. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS 365. Mol. Plant-Microbe Interact. 11, 763, 1998.
  • 29. GOTTLIEB M. Czynniki determinujące zdolność bakterii z rodzaju Pseudomonas do kolonizacji systemu korzeniowego roślin (Factors affecting the ability to colonization of root system by bacteria from the genus Pseudomonas). Post. Mikrobiol. 41, 277, 2002.
  • 30. KLUEPFEL D.A. The behavior and tracking of bacteria in the rhizosphere. Annu. Rev. Phytopathol. 31, 441, 1993.
  • 31. ZHENG X.Y., SINCLAIR J.B. The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. Biocontrol 45, 223, 2000.
  • 32. DE LEIJ F.A.A.M., WHIPS J.M., LYNCH J.M. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 27, 81, 1993.
  • 33. DEKKERS L.C., PHOELICH C.C., LUGTENBERG B.J.J. Bacterial traits and genes involved in rhizosphere colonization. (in) “Microbial Biosystems: New Frontiers” Proceedings of the 8th International Symposium on Microbial Ecology. Bell C.R., Brylinsky M., Johnson-Green P. (eds) Atlantic, Canada Society for Microbial Ecology, Halifax, Canada, pp. 821, 2000.
  • 34. TURNBULL G.A., MORGAN J.A., WHIPS J.M., SAUNDERS J.R. The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol. Ecol. 35, 57, 2001.
  • 35. CHIN-A-WOENG T.F.C., BLOEMBERG G.V., MULDERS I.H.M., DEKKERS L.C., LUGTENBERG B.J.J. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL 1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact. 13, 1340, 2000.
  • 36. QUADT-HALLMANN A., BENHAMOU N., KLOEPPER J.W. Bacterial endophytes in cotton: mechanisms of entering the plant. Can. J. Microbiol. 43, 577, 1997.
  • 37. VAN PEER R., PUNTE H.L.M., DE WEGER L.A., SCHIPPERS B. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl. Environ. Microbiol. 56, 2462, 1990.
  • 38. COOLEY M.B., MILLER W.G., MANDRELL R.E. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 69, 4915, 2003.
  • 39. SHISHIDO M., LOEB B.M., CHANWAY C.P. external and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can. J. Microbiol. 41, 707, 1995.
  • 40. JOHANSEN J.E., BINNERUP S.J. Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.). Microb. Ecol. 43, 298, 2002.
  • 41. OLSSON S., PERSSON P. The composition of bacterial populations soil fractions differing in their degree of adherence to barley roots. Appl. Soil Ecol. 12, 205, 1999.
  • 42. NIHUIS E.H., MAAT M.J., ZEEGERS I.W.E., WAALWIJK C., VAN VEEN J.A. Selection of bacteria suitable for introduction into the rhizosphere of grass. Soil Biol. Biochem. 25, 885, 1993.
  • 43. MARILLEY L., ARAGNO M. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 13, 127, 1999.
  • 44. PÉCHY-TARR M., BOTTIGLIERI M., MATHYS S., LEJB(okreska)LLE K.B., SCHNIDER-KEEL U., MAURHOFER M., KEEL C. RpoN (σ54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 18, 260, 2005.
  • 45. KNOX O.G.G., KILLHAM K., ARTZ R.R.E., MULLINS C., WILSON M. Effect of Nematodes on Rhizosphere Colonization by Seed-Applied Bacteria. Appl. Environ. Microbiol. 70, 4666, 2004.
  • 46. MAWDSLEY J.L., BURNS R.G. Factors affecting the survival of a Flavobacterium species in non-planted and rhizosphere soil. Soil Biol. Biochem. 26, 849, 1994.
  • 47. BOWEN G.D., ROVIRA A.D. The rhizosphere and its management to improve plant growth. Adv. Agron. 66, 1, 1999.
  • 48. LIDDELL C.M., PARKE J.L. Enhanced colonization of pea taproots by a fluorescent pseudomonad biocontrol agent by water infiltration into soil. Phytopathology 79, 1327, 1989.
  • 49. NATCH A., KEEL C., TROXLER J., ZALA M., VON ALBERTINI N., DÉFAGO G. Importance of preferential flow and soil management in vertical transport of a biocontrol strain of Pseudomonas fluorescens in structured field soil. Appl. Environ. Microbiol. 62, 33, 1996.
  • 50. PARKE J.L., MOEN R., ROVIRA A.D., BOWEN G.D. Soil water flow affects the rhizosphere distribution of a seedborne biological control agent, Pseudomonas fluorescens. Soil Biol. Biochem. 18, 583, 1986

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-bb20c1c6-98b7-4de3-a7a7-3117a12a64a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.