PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 4 |

Tytuł artykułu

Contents of soluble carbohydrates in yellow lupin seeds maturated at various temperatures

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of this paper was to compare the levels of soluble sugars in seeds of yellow lupin cv. Juno matured at different temperatures. The temperature regimes applied were 1). 26 °C for 24 h (high temperature), 2). 24 °C for 12 h and 19 °C for the next 12 h (optimum temperature regime), 3). 26 °C for 16 h and 4 °C for the next 8 h (high-low temperatures). Six soluble carbohydrates (D-galactose, myo-inositol, sucrose, raffinose, stachyose and verbascose) were quantified. Seeds maturing at constant temperature 26 °C accumulated more raffinose (by 100 %) than seeds maturing at optimum temperature regime. Seeds maturing at high temperature accumulated less stachyose and verbascose than those maturing at optimum temperature conditions, the differences being 45 and 24 %, respectively. In seeds maturing at high-low temperature the level of raffinose decreased while the level of stachyose and verbascose increased, compared to those maturing at optimum conditions. The contents of sucrose, D-galactose and myo-inositol in seeds maturing at optimum temperatures was lower than in seeds maturing at both high and high-low temperature regimes. It was shown, that temperature conditions - constant high temperature, or physiologically optimal thermal oscillations (24 °/19°C)or high-low temperature regime - differently affect the contents of six soluble carbohydrates in maturing seeds of yellow lupin.

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.349-356,fig.,ref.

Twórcy

  • University of Warmia and Mazury, Oczapowskiego 1A, Olsztyn, Poland

Bibliografia

  • Braccia A., Villani M., Immerdal L., Niels-Christiansen L.L., Nystram B.T., Hansen G.H., Michael E. 2003. Danielsen microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabitizer revealed by “superrafts”. J. Biol. Chem., 278: 15679-15684.
  • Carpenter J.F., Crowe J.H. 1989. An infrared spectroscopic study of the interactions of carbohydrates with dried pro teins. Bio chemis try 28: 3916-3922.
  • Castillo E.A., de Lumen B.O., Reyes P.S., de Lumen H.Z. 1990. Raffinose synthase and galactinol synthase in developtng seeds and leaves of legumes. J. Agric. Food Chem., 38: 351-355.
  • Clapham W.M., Willcott J.B. 1995. Thermosensitivity in spring white lupin. Ann. Bot., 76: 349-357.
  • Dey P.M. 1997. Carbohydrates metabolism. In: Plant Biochemś sty, ed. by P.M. Dey, J.B. Harborne, Academic Press Ltd. 150-204.
  • Dhont C., Castonguay Y., Nadeau P., Belanger G., Chalifour F.P. 2002. Alfalfa root carbohydrates and regrowth potential in response to fall harvests. Crop Sci., 42: 754-765.
  • Downes R.W., Gladstones J.S. 1984. Physiology of growth and seed production on Lupinus angustifolius L. Effects on pod and seed set of controlled short duration high temperatures at flowering. Aust. J. Agri. Res., 35: 493-499.
  • Gilmour S.J., Sebolt A.M., Salazar M.P., Everard J.D., Thomashow M.F. 2000. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol., 124: 1854-1865.
  • Górecki R.J., Brenac P., Clapham W.M., Willcott J.B., Obendorf R.L. 1996. Soluble carbohydrates in white lupin seeds matured at 13 and 28 °C. Crop Sci., 36: 1277-1282.
  • Górecki R.J., Piotrowicz-Cieślak A.I., Obendorf R.L. 1997. Soluble sugars and flatulence-producing oligosaccharides in maturing yellow lupin (Lupinus luteus L.) seeds. Seed Sci. Res., 7: 185-193.
  • Hitz W.D., Carlson T.J., Kerr P.S., Sebastian S.A. 2002. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol., 128: 650-660.
  • Horbowicz M., Brenac P., Obendorf R.L. 1998. Fago-pyritol B1, O-α-D-galactopyranosyl-(1→2)-d-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta, 205: 1-11.
  • Horbowicz M., Obendorf R.L. 1994. Seed desiccation tolerance and storability: dependence on flatulence-producing oligosaccharides and cyclitols-review and survey. Seed Sci. Res., 4: 385-405.
  • Hurry V.M., Malmberg G., Gardestrom P., Oquist G. 1994. Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose 1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.). Plant Physiol., 106: 983-990.
  • Hurry V.M., Strand A., Tobteson M., Gardestrom P., Oquist G. 1995. Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol., 109: 697-706.
  • Kaplan F., Kopka J., Haskell D.W., Zhao W., Schiller K.C., Gatzke N., Sung D.Y., Guy C.L. 2004. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol., 136: 4159-4168.
  • Keller F., Ludlow M.M. 1993. Carbohydrate metabolism in drought stressed leaves of pigeonpeas (Cajanus cajan). J. Exp. Bot., 44: 1351-1359.
  • Kumudini S., Hume D.J., Chu G. 2001. Genetic improvement in short season soybeans: I. Dry mass accumulation, partitioning, and leaf area duration. Crop Sci., 41: 391-398.
  • Lee G.J., Pokala N., Vierling E. 1995. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem., 270: 10432-10438.
  • Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett., 461: 205-210.
  • Panikulangara T.J., Eggers-Schumacher G., Wunderlich M., Stransky H., Schoffl F. 2004. Galactinol synthase 1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. PlantPhysiol., 136: 3148-3158.
  • Peterbauer T., Richter A. 2001. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seeds Sci. Res., 11: 185-172.
  • Piotrowicz-Cieślak A.I. 2005. Changes in soluble carbohydrates in yellow lupin seed under proionged storage. Seed Sci. Technol., 33: 141-145
  • Piotrowicz-Cieślak A.I., Gracia-Lopez P.M., Gulewicz K. 2003. Cyclitols, galactosyl cyclitols and raffinose family oligosaccharides in Mexican wild lupin seeds. Acta Soci. Bot. Poloniae, 72(2): 109-114.
  • Piotrowicz-Cieślak A.I., Górecki R.J., Rejowski A. 2000. Soluble oligosaccharides and galactosyl cyclitols in maturing lupin seed. Hotriculture and Vegetable Growing 19(3)-2: 273-28.
  • Porankiewicz J., Gwóźdź E.A. 1995. Protein synthesis in lupin roots exposed to heat shock. Acta Physiol. Plant., 17: 47-54.
  • Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S., Mittler R. 2004. When defense pathways collide. The response ofArabidopsis to a combination of drought and heat stress. Plant Physiol., 134: 1683-1696.
  • Shield I., Stevenson H.J., Leach J.E., Scott T., Day J. M., Milford G.F.J. 1996. Effects of sowing date and planting density on the structure and yield of autumn-sown, florally-determinate white lupins (Lupinus albus) in the United Kingdom. J. Agri. Sci., 127: 183-191.
  • Sjögren L.L.E, MacDonald T.M., Sutinen S., Clarke A.K. 2004. Inactivation of the clpC1 Gene encoding a chloroplast HSP-100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol., 136: 4114-4126.
  • Smith P.T., Kuo T.M., Crawford C.G. 1991. Purification and characterization of galactinol synthase from mature Zucchini squash leaves. Plant Physiol., 96: 693-698.
  • Strand A., Hurry V., Henkes S., Huner N., Gustaf- sson P., Gardestrom P., Stitt M. 1999. Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin Cycle and in the sucrose-biosynthesis pathway. Plant Physiol., 119: 1387-1398.
  • Taji T., Ohsumi C., Iuchi S., Seki M., Kasuga M., Kobayashi M., Yamaguchi-Shinozaki K., Shinozaki K. 2002. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J., 29: 417-426.
  • Tapernoux-Luthi E.M., Bohm A., Keller F. 2004. Cloning, functional expression, and characterization of the raffinose oligosaccharide chain elongation enzyme,galactan:galactan galactosyltransferase, from common bugle leaves. PlantPhysiol., 134: 1377-1387.
  • Thomashow M.F. 2001. So what’s new in the field of plant cold acclimation? Lots! Plant Physiol., 125: 89-93.
  • Uemura M., Warren G., Steponkus P.L. 2003. Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol., 131: 1800-1807.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ba870706-1def-4390-b327-01c1b2a45cba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.