PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 5 |

Tytuł artykułu

Cyanide action in plants - from toxic to regulatory

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recent biochemical and genetic studies on hydrogen cyanide (HCN) metabolism and function in plants were reviewed. The potential sources of endogenous cyanide and the pathways of its detoxification are outlined and the possible signaling routes by which cyanide exerts its physiological effects are discussed. Cyanide is produced in plant tissues as the result of hydrolysis of cyanogenic compounds and is also released as a co-product of ethylene biosynthesis. Most cyanide produced in plants is detoxified primarily by the key enzyme P-cyanoalanine synthase. The remaining HCN at non-toxic concentration may play a role of signaling molecule involved in the control of some metabolic processes in plants. So, HCN may play a dual role in plants, depending on its concentration. It may be used in defense against herbivores at high toxic concentration and may have a regulatory function at lower concentration. Special attention is given to the action of HCN during biotic and abiotic stresses, nitrate assimilation and seed germination. Intracellular signaling responses to HCN involve enhancement of reactive oxygen species (ROS) generation and the expression of cyanide-insensitive alternative oxidase (AOX) and ACC synthase (ACS) genes. The biochemical and cellular mechanisms of these responses are, however, not completely understood.

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.483-497,fig.,ref.

Twórcy

autor
  • The University of Bialystok, Swierkowa 20B, 15-950 Bialystok, Poland
autor

Bibliografia

  • Achard P., Wriezen W.H., Van Der Straeten D., Harberd N.P. 2003. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell. 15: 2816-2825.
  • Alscher- Herman R., Musgrave M., Leopold A. C. and Khan A.A. 1981. Respiratory changes with stratification of pear seeds. Physiol. Plant. 52: 156-160.
  • Arteca J.M., Arteca R. N. 1999. A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol. Biol. 39: 209-219.
  • Bailly Ch. 2004. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14: 93-107.
  • Beesley S.G., Compton S.G. and Jones D.A. 1985. Rhodanese in insects. J. Chem. Ecol. 11: 45-50.
  • Bogatek R., Rychter A. 1984. Respiratory activity of apple seed during dormancy removal and germination. Physiol. Veg. 22: 181-191.
  • Bogatek R., Lewak St. 1988. Effect of cyanide and cold treatment on sugar catabolism in apple seeds during dormancy removal. Physiol. Plant. 73: 406-411.
  • Bogatek R., Lewak St. 1991. Cyanide controls enzymes involved in lipid and sugar catabolism in dormant apple embryos during culture. Physiol. Plant. 83: 422-426.
  • Bogatek R., Come D., Corbineau F., Picard M.-A., Żarska-Maciejewska B., Lewak St. 1999. Sugar metabolism as related to the cyanide-mediated elimination of dormancy in apple embryos. Plant Physiol. Biochem. 37: 577-585.
  • Bogatek R., Sykała A., Krysiak C. 2004. Cyanide-induced ethylene biosynthesis in dormant apple embryos. Acta Physiol. Plant. 26 (suppl.). 16.
  • Bogatek R., Gawrońska H., Oracz K. 2003. Involvement of oxidative stress and ABA in CN-mediated elimination of embryonic dormancy in apple. In: Nicolas G., Bradford K.J., Come D. and Pritchard H.W. (eds.) The Biology of seeds: Recent research Adv. pp: 211-216.
  • Bogatek R., Gniazdowska A. 2006. Nitric oxide and HCN reduce deep dormancy of apple seeds. Acta Physiol. Plant. 28: 281-287.
  • Bordo D., Bork P. 2002. The rhodanese/Cdc25 phosphate superfamily-sequence-structure-function relations. EMBO Reports 3: 741-746.
  • Chen Y-F., Etheridge N., Schaller G. E. 2005. Ethylene signal transduction. Ann. Bot. 95: 901-915.
  • Calvo A.P., Nicolas C., Lorenzo O., Nicolas G., Rodriguez D. 2004. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J. Plant Growth Regul. 23: 44-53.
  • Chivasa S., Carr J.P. 1998. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydrolase. Plant Cell 10: 1489-1498.
  • Desikan R., Mackerness S.A.H., Hancock J.T., Neill S.J. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159-172.
  • Dobrzyńska U., Gniazdowska A., Babanczyk T., Bogatek R. 2005. Cyanide and nitric oxide as a regulatory factors of seed germination. Proc. of 2nd Conf. of Pol. Soc. Plant Exp. Biol. 26-29 Sept., Poznań, Poland
  • Dziewanowska K., Lewak St. 1982. Hydrogen cyanide and cyanogenic compounds in seeds. V. Effects of cyanide and azide on germination of apple embryos in relation to their dormancy. Physiol. Veg. 20: 171-177
  • Dziewanowska K., Niedźwiedź I., Chodelska I., Lewak St. 1979a. Hydrogen cyanide and cyanogenic compounds in seeds. I. Influence of hydrogen cyanide on germination of apple embryos. Physiol. Veg. 17: 279-303.
  • Dziewanowska K., Niedźwiedź I., Lewak St. 1979b. Hydrogen cyanide and cyanogenic compounds in seeds. II. Changes in free HCN level in apple seeds during stratification. Physiol. Veg. 17: 681-686.
  • Dziewanowska K. 1983. Biological role of cyanogenic compounds and of hydrogen cyanide (in Pols sh). Postępy Biochem. 29: 227-238.
  • Echevarria C., Maurino S.G. and Maldonado J.M. 1984. Reversible inactivation of maize leaf nitrate reductase. Phytochemistry 23: 2155-2158.
  • Esashi Y., Isuzugawa K., Matsuyama S., Ashino H., Hasegawa R. 1991. Endogenous evolution of HCN during pre-germination periods in many seed species. Physiol. Plant. 83: 27-33.
  • Fontaine O., Huault C., Pavis N., Billard J.P. 1994. Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxtde and scarification on glutathione level and glutathione reductase activity. Plant Physiol. Bioch. 32: 677-683.
  • Gleadow R.M., Woodrow I.E. 2002. Constraints on effectiveness of cyanogenic glycosides in herbivore dec fense. J. Chem. Ecol. 28: 1301-1313.
  • Gniazdowska A., Bogatek R. 2005. Allelopatic interactions between plants. Multi site action of alleloche- micals. Acta Physiol. Plant. 27: 395-407.
  • Grossmann K. 1996. A role for cyanide, derived from ethyltne biosynthesis, in the development of stress symptoms. Physiol. Plant. 97: 772-775.
  • Grossmann K. 2003. Mediation of herbicide effects by hormone interactions. J. Plant Growth Reg. 22: 109-122.
  • Grossmann K., Kwiatkowski J. 1995. Evidence for a causative role of cytnide, derived from ethylene biosynthesis, in the herbic idal mode of act ion of quinoclorac in barnyard grass. Pest. Bioch. Physiol. 51: 150-160.
  • Gruhnert C. Biehl B., Selmar D. 1994. Comparri mentation of cyanogenic glucoside and their degrading enzymes. Planta 195: 36-42.
  • Gunasekar P.G., Borowitz J.L. and Isom G.E. 1998. Cyanide-induced generation of oxidative species: Involvement of nitric oxtde synthase and cyclooxyget nase-3. J. Pharmacol. Exp. Ther. 285:236-241.
  • Hasegawa R., Tada T., T orii Y., Esashi Y. 1994. Presence of P-cyanoalanine synthase in unimbibed dry seeds and its activation by ethylene during pre-germination. Physiol. Plant. 1: 141-146.
  • Hatzfeld Y., Saito K. 2000. Evidence for ex is tence of rhodanese (thiosulfate: cytnide sulfurtransferase) in plants: preliminary characterization of two rhodanese cDNAs from Arabidopsis thaliana. FEBS Letters 470: 147-150
  • Hippeli S., Heiser I., Elstner E.F. 1999. Activated oxygen and free oxygen radicals in pathology: New insights and analogies between animals and plants. Plant Physiol. Biochem. 37: 167-178.
  • Huang Y., Li H., Hutchison C.E., Laskey J., Kieber J.J. 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33: 221-233.
  • Hucklesby D.P., Dowling M.J., Hewitt E.J. 1982. Cyanide formation from glyoxylate and hydroxylamine catalyzed by extracts of higher-plant leaves. Planta 156: 487-491.
  • Inderjit, Duke S.O. 2003. Ecophysiological aspects of allelopathy. Planta. 217:529-539.
  • Jensen M.S., Ahlemeyer B., Ravati A., Thakur P., Mennel H-D., Krieglstein J. 2002. Preconditioning-induced protection against cyanide-induced neurotoxicity is mediated by preserving mitochondrial function. Neurochem. Int. 40: 285-293.
  • Jones P.R., Andersen M.D., Nielsen J.S., Hoj P.B., Moller B.L. 2000. The biosynthesis, degradation, transport and possible function of cyanogenic glycosides. In: Romero J.T., Ibrahim R., Varin L, De Luca V. (eds.). Evolution of Metabolic Pathways. Elsevier Science, New York, pp.: 191-247.
  • Junttila O., Nilsen A. J. 1980. Stimulation of Phalaris seed germination by respiratory inhibitors and oxidizing agents. Z. Pflanzenphysiol. 97: 429-435.
  • Juszczuk I.M., Rychter A.M. 2003. Alternative oxidase in higher plants. Acta Bioch. Pol. 50: 1257-1271.
  • Kacperska A. 2004. Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol. Plant. 122: 159-168.
  • Kakes P., Hakvoort H. 1992. Is the rhodanese activity in plants? Phytochemistry 31: 1501-1505
  • Kępczyński J., Kępczyńska E. 1997. Ethylene in seed dormancy and germinat ion. Physiol. Plant. 101: 720-726.
  • Koornneef M., Karssen C.M. 1994. Seed dormancy and germination. In: Somerville C.R., Meyerowitz E.M. eds. Arabidopsis 1994. Cold Spring Harbour laboratory Press, New York, pp.: 313-334.
  • Larsen M., Trapp S., Pirandello A. 2004. Removal of cyanide by woody plants. Chemosphere 54: 325-333.
  • Latha M.V., Borowitz J.L., Yim G.K.W., Kanthasamy A., Isom G.E. 1994. Plasma membrane hyperpolarization by cyanide in chromaffin cells: role of potassium channels. Arch. Toxicol. 68: 370-374.
  • Lewak St., Bogatek R., Żarska-Maciej ewska B. 2000. Sugar metabolism in apple embryos. In: Viemont J.-D. and Grabbe J. (eds.), Dormancy in Plants. CAB International, pp.: 47-55.
  • Li. L., Prabhakaran K., Shou Y., Borowitz J.L., Isom G.E. 2002. Oxidative stress and cyclooxygenase-2 induction mediate cyanide-induced apoptosis of cortical cells. Toxicol. Appl. Pharm. 185: 55-63.
  • Liang W.-S., Li D.-B. 2001. The two β-cyanoalanine synthase isozymes of tobacco showed different antioxidative abilities. Plant Sci. 161: 1171-1177.
  • Liang W.-S. 2003. Drought stress increases both cyano- genesis and â-cyanoalanine synthase activity in tobacco. Plant Sci. 165:1109-1115.
  • Maruyama A., Yoshiyama M., Adachi Y., Tani A., Hasegawa R., Esashi Y. 1996. Promotion of cocklebur seed germination by allyl, sulfur and cyanogenic compounds. Plant Cell Physiol. 37: 1054-1058
  • Maruyama A., Kazuki S., Ishizawa K. 2001. β-Cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol. Biol. 46: 749-760.
  • Mathangi D.C., Namasivayam A. 2004. Calcium ions: its role in cyanide neurotoxicity. Food Chem. Toxicol. 42: 359-361.
  • Matilla A.J. 2000. Ethylene in seed formation and germination. Seed Sci. Res. 10: 111-126.
  • May M.J., Vernoux T., Leaver C., Van Montagu M., Inze D. 1998. Glutathione homeostasis in plants:implications for environmental sensing and plant development. J. Exp. Bot. 49: 649-667.
  • Meyer T., Burow M., Bauer M., Papenbrock J. 2003. Arabidopsis sulfurtransferases: investigation of their function during senescence and in cyanide detoxification. Planta 217: 1-10.
  • Meyers D., Ahmad S. 1991. Link between L-3 cyano-alanine synthase activity and differential cyanide sensitivity of insects. Biochim. Biophys. Acta 1075: 195-197
  • Miller J.M., Conn E.E. 1980. Metabolism of hydrogen cyanide by higher plants. Plant Physiol. 65: 1199-1202.
  • Moller B.L., Seigler D.S. 1999. Biosynthesis of cyanogenic glycosides, cyanolipids, and rel ated compounds. In: Plant Amino Acids. B.K. Singh B.K. (ed.), Marcel Dekker, Inc. New York., pp.: 563-609
  • Moore A. L., Albury M.S., Crichton P.G., Affourtit Ch. 2002. Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci. 7: 478-481.
  • Morohashi Y., Matsushima H. 1983. Appearance and disappearance of cyanide-resistrant respiration in Vigna mungo cotyledons during and following germination of the axis. Plant Physiol. 73: 82-86.
  • Munnink T., Meijer H.J.G. 2001. Osmotic stress activates distinct lipid and MAPK signaling pathways in plants. FEBS Lett. 498: 172-178.
  • Nahrstedt A. 1985. Cyanogenic compounds as protecting agents for organisms. Plant Sys. Evol. 150: 35-47.
  • Nahrstedt A. 1993. Cyanogenesis and foodplants. In: Proc. of the Phytochem. Soc. in Europe, ed. by T.A. van Beek., H. Breteler, Clarendon Press, Oxford: 107-129.
  • Neill S., Desikan R., Clarke A., Hurst R.D., Han- coock J.T. 2002. Hydrogen peroxide and nitric oxide as signalling mol e cules in plants. J. Exp. Botany 53: 1237-1247.
  • Neill S.J. Desikan R., Hancock J.T. 2003. Nitric oxide signalling in plants. New Phytol. 159: 11-35.
  • Niedźwiedź-Siegień I. 1998. Cyanogenic glucosides in Linum usitatissimum. Phytochemistry 49: 59-63.
  • Niedźwiedź-Siegień I.,Gierasimiuk A. 2001. Environmental factors affecting the cyanogenic potential of flax seedlings. Acta Physiol. Plant. 23: 383-380.
  • Nkang A. 2001. Effect of cyanide pre-treatment on activities of polyphenoloxidase and peroxidase in seeds of Guilfoylia monostylis. Seed Sci. Technol. 29: 557-565.
  • Nun N.B., Plakhine D., Joel D.M., Mayer A.M. 2003. Changes in the activity of the alternative oxidase in Orobanche seeds g conditionmg and their pos tible physiological function. Phytochemistry 64: 235-241.
  • Ordog S.H., Higgins V.J., Vanlerberghe G.C. 2002. Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the hypersensitive response. Plant Physiol. 129:1858-1865.
  • Overmyer K., Brosche M., Kangasjavri J. 2003. Reactive oxygen speces and hormonal control of cell death. Trends in Plant Sci. 8: 335-342.
  • Peiser G.D., Wang T.-T., Hoffman N.E., Yang S.F., Liu H.-W., Walsh C.T. 1984. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc. Natl. Acad. Sci. USA 81: 3059-3063.
  • Roberts E. 1969. Seed dormancy and oxidation processes. Symp. Soc. Exp. Biol. 23: 161-192.
  • Saito K. 2000. Regulation of sulhate transport and synthesis of sulfur-containing amino acids. Curr. Opimon Plant Biol. 3: 188-195.
  • Samuilov V.D., Lagunova E.M., Beshta O.E., Kitashov A.V. 2000. CN-induced degradation of nuclei in cells of pea leaves. Biochemistry (Moscow) 65: 696-702.
  • Seigler D.S. 1991. Cyanide and cyanogenic glycosides. In; Herbivores: Their Interactions with Secondary Plant Metabolites. Rosenthal G. A. and Berenbaum M.R. (eds.) Academic Press, San Diego, pp.: 35-77.
  • Selmar D. 1993. Apoplastic occurrence of cyanogenic β-glucosidases and consequences for the metabolism of cyanogenic glucosides. β-Glucosidases: Biochemistry and Motecutar Biology, Am. Chem. Soc. Symp. Ser. 533, American Chemical Society, Washington, DC, pp.: 190-203.
  • Selmar D., Lieberei R., Biehl B. 1988. Mobilization and utilization of cyanogenic glycosides. The linustatin pathway. Plant Physiol. 86: 711-716.
  • Shou Y., Gunasekar P.G., Borowitz J.L., Isom G.E. 2000. Cyanide-induced apoptosis involves oxidative-stress-activated NF-KB in cortical neurons. Toxicol. Appl. Pharmacol. 164: 196-205.
  • Siefert F., Kwiatkowski J., Sarkar S., Grossmann K. 1995. Changes in endogenous cyanide and 1-aminocy- clopropane-1-carboxylic acid levels during the hypersensitive response of tobacco mosaic virus-infected tobacco leaves. Plant Growth Regul. 17: 109-113.
  • Siegień I. 1998. Cyanogenesis in plants. Postępy Biochem. (in Polish) 44: 325-332.
  • Siritunga D., Sayre R. 2004. Engineering cyanogen synthesis and turnover in cassava. Plant Mol. Biol. 56: 661-669.
  • Smith J. M., Arteca R.N. 2000. Molecular control of ethylene production by cyanide inArabidopsis thaliana. Physiol. Plant. 109:180-187.
  • Smoleńska G., Lewak St. 1971. Gibberellins and the photosensitivity of isolated embryos from non stratified apple seeds. Planta 99: 144-153.
  • Solomonson L.P., Barber M.J. 1990. Assimilatory nitrate reductase: functional properties and regulation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41: 225-253.
  • Solomonson L.P., Spehar A.M. 1977. Model for regulation of nitrate assimilation. Nature 265: 373-375.
  • Stochmal A., Oleszek W. 1997. The changes of cyanogenic glucosides in white clover (Trifolium repens L.) during the growing season. J. Agric. Food Chem. 11: 4333-4336.
  • Tommasi F., Paciolla C., de Pinto M.C., De Gara L. 2001. A comparative study of glutathione and ascorbate metabolism during germination of Pinuspinea L. seeds. J. Exp. Bot. 52: 1647-1654.
  • Tretyn A. 2002. Regulacja procesów wzrostu i rozwoju przez czynniki środowiskowe. In: “Plant Physiology”, ed. by Kopcewicz J., Lewak St., PWN, War s aw: 167-191, (in Polish).
  • Tucker M.L., Laties G.G. 1984. Comparative effects of ethylene on the respiration polysome prevalence, and gene expression in carrot roots. Plant Physiol. 75: 342-348.
  • Vranova E., Inze D., Breusegem F.V. 2002. Signal transduction during oxidaiive stress. J. Exp. Bot. 53: 1227-1236.
  • Wagner A.M., Moore A.L. 1997. Structure and function of the plant alternative oxidase:its putative role in oxygen defence mechanisms. Bioscience Rep. 17: 319-333.
  • Wittstock U. and Gershenzon J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opinion in Plant Biol. 5: 1-8.
  • Wojtaszek P. 2000. Nitric oxide in plants. To NO or not to NO. Phytochemistry. 54: 1-4
  • Wojtaszek P. 1997. Oxidaiive burst: an early plant respone to pathogen infect ion. Biochem. J. 322: 681-692.
  • Wong Ch.E., Carso R.A.J., Carr J.P. 2002. Chemically induced virus resistance in Arabidopsis thaliana id independent on pathogenesis-related protein expression and the NPR1 gene. MPMI. 15: 75-81
  • Yip W.-K., Yang S.F. 1988. Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol. 88: 473-476.
  • Zagórski S., Lewak St. 1985. Germination of lettuce seeds promoted by red light, gibberellin or cyanide is differently affected by far red illumination and temperature. Acta Physiol. Plant. 7: 65-70.
  • Zagrobelny M., Bak S., Rasmussen V., Jorgensen B., Naumann C.M., Moller B.L. 2004. Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65: 293-306.
  • Zottini M., Formentin E., Scattolin M., Carimi F., Lo Schiavo F., Terzi M. 2002. Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Let. 515: 75-78.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ba6b0c51-ea38-4f3d-b33e-6142c526384f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.