PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 78 | 4 |

Tytuł artykułu

Flora of toxic depots in selected industrial zones

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Floristic composition in three industrial areas with soils contaminated by heavy metals (As, Cd, Cu, Hg, Pb, Zn) and organic pollutants (polychlorinated biphenyls) was studied. The content of Pb was only significantly correlated with the floristic composition and explained 13.8% of its variability considering spatial dependency of the sites. No correlation was found for PCBs. Altogether, 237 plant vascular species were found at three study sites (117, 133 and 105, respectively). The three study areas differed in their species composition represented by their own characteristic species. The gradient in the content of natives/non-natives, species number, prevailing life forms and indicator values for plant species investigated was revealed. Based on our results, for phytoremediation purposes we can select productive plant species with high biomass and ability to accumulate large amounts of heavy metals or organic compounds and surviving on soils with low mineral content.

Wydawca

-

Rocznik

Tom

78

Numer

4

Opis fizyczny

p.327-334,fig.,ref.

Twórcy

autor
  • Academy of Sciences of the Czech Republic, Zamek 1, 252-43 Pruhonice, Czech Republic
autor
autor
autor
autor
autor

Bibliografia

  • ADRIANO D.C., WENZEL W.W., VANGRONSVELD J., BOLAN N.S. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma 122: 121-142.
  • BAKER A.J.M., McGRATH S.P., REEVES R.D., SMITH J.A.C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N., Banuelos G. (eds), Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, p. 359-376.
  • BARAZANI O., DUDAI N., KHADKA U.R., GOLAN-GOLD- HIRSH A. (2004) Cadmium accumulation in Allium schoeno- prasum L. grown in an aqueous medium. Chemosphere 57:1213-1218.
  • BREJ T., FABISZEWSKI J. 2006. Plants accumulating heavy metals in Sudety Mts. Acta Soc. Bot. Pol. 75: 61-68.
  • BRUELHEIDE H. 2000. A new measure of fidelity and its application to defining species groups. J. Veg. Sci. 11: 167-178.
  • CHENG S. 2003a. Effects of heavy metals in plants and resistance mechanism. Environ. Sci. Pollut. Res. 10: 250-264.
  • CHENG S. 2003b. Heavy metals in plants and phytoremediation. Environ. Sci. Pollut. Res. 10: 335-340.
  • ELLENBERG H., WEBER H.E., DULL R., WIRTH V., WERNER W., PAULISSEN D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Ed. 2. Scripta Geobot. 18: 1-258.
  • HILL M.O. 1979. TWINSPAN. A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell Univ., New York.
  • KUBAT K., HROUDA L., CHRTEK J., KAPLAN Z., KIRSCH- NER J., STEPANEK J. (eds). 2002. Klic ke kvetene Ceske republiky. Academia, Praha.
  • KUCEROVA M., WIESCHE C., WOLTER M., MACEK T., ZADRAZIL F., MACKOVA M. 2001. The ability of different plant species to remove polycyclic aromatic hydrocarbons and polychlorinated biphenyls from incubation media. Biotechnol. Letters 23: 1355-1359.
  • LEHMANN C., REBELE F. 2004a. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment. Int. J. Phytorem. 6: 169-183.
  • LEHMANN C., REBELE F. 2004b. Evaluation of heavy metal tolerance in Calamagrostis epigejos and Elymus repens revealed copper tolerance in a copper smelter population of C. epigejos. Environ. Experim. Bot. 51: 199-213.
  • MENDEZ M.O., MAIER R.M. 2008. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Biotechnol. 7: 47-59.
  • PETRiK P., BRUELHEIDE H. 2006. Species groups can be transferred across different scales. J. Biogeogr. 33: 1628-1642.
  • PYSEK P., SADLO J., MANDAK B. 2002. Catalogue of alien plants of the Czech Republic. Preslia 74: 97-186.
  • REBELE F., SURMA A., KUZNIK C., BORNKAMM R., BREJ T. 1993. Heavy metal contamination of spontaneous vegetation and soil around the copper smelter “Legnica”. Acta Soc. Bot. Pol. 62: 53-57.
  • SOUDEK P., PETRiK P., VAGNER M., PODRACKA E., TYKVA R., PLOJHAR V., PETROVA S., VANEK T. 2007. Botanical survey and screening of plant species which accumulate 226Ra from contaminated soil of uranium waste depot. Eur. J. Soil Biol. 43: 251-261.
  • TER BRAAK C. J. F., SMILAUER P. 2002. CANOCO reference manual and CanoDraw for Windows. User’s guide Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca.
  • TICHY L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451-453.
  • VANKOVA J., KOVAR P. 2004. Plant species diversity in the biotopes of unreclaimed industrial deposits as artificial islands in the landscape. In: Kovar P. (ed.), Natural recovery of human-made deposits in landscape, Academia, p. 30-45.
  • WU L.H., LI H., LUO Y.M., CHRISTIE P. 2004. Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Environ. Geochem. Health 26: 331-335.
  • ZAHRA A., MESDAGHINIA A., NOURI J., HOMAEE M., YUNESIAN M., AHMADIMOGHADDAM M., MAHVI A.H. 2008. Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess. DOI 10.1007/ s10661-008-0659-x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b8cde615-dd84-4ba5-ba90-3db879715d07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.