PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 2 |

Tytuł artykułu

Ketone bodies activate gluconeogenesis in isolated rabbit renal cortical tubules incubated in the presence of amino acids and glycerol

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In isolated rabbit renal kidney-cortex tubules 2 mM glycerol, which is a poor gluconeogenic substrate, does not induce glucose formation in the presence of alanine, while it activates gluconeogenesis on substitution of alanine by aspartate, glutamate or proline. The addition of either 5 mM 3-hydroxybutyrate or 5 mM acetoacetate to renal tubules incubated with alanine + glycerol causes a marked induction of glucose production associated with inhibition of glutamine synthesis. In contrast, the rate of the latter process is not altered by ketones in the presence of glycerol and either aspartate, glutamine or proline despite the stimulation of glucose formation. Acceleration of gluconeogenesis by ketone bodies in the presence of amino acids and glycerol is probably due to (i) stimulation of pyruvate carboxylase activity, (ii) activation of malate-aspartate shuttle as concluded from elevated intracellular levels of malate, aspartate and glutamate, as well as (iii) diminished supply of ammonium for glutamine synthesis from alanine resulting from a decrease in glutamate dehydrogenase activity.

Wydawca

-

Rocznik

Tom

44

Numer

2

Opis fizyczny

p.323-331,fig.

Twórcy

autor
  • Warsaw University, Al.F.Zwirki i S.Wigury 93, 02-089 Warsaw, Poland
autor
autor

Bibliografia

  • 1. Williamson, D.H., Bates, M.W., Page, M.A. & Krebs, H.A. (1971) Activities of enzymes in­volved in acetoacetate utilization in adult mammalian tissues. Biochem. J. 121, 41—47.
  • 2. Middleton, B. (1973) The oxoacyl-coenzyme A thiolases of animal tissues. Biochem. J. 132, 717-730.
  • 3. Page, M.A., Krebs, H.A. & Williamson, D.H. (1971) Activities of enzymes of ketone body utilization in brain and other tissues of suck­ling rats. Biochem. J. 121, 49-53.
  • 4. Weidemann, M.J. & Krebs, H.A. (1969) The fuel of respiration of rat kidney-cortex. Bio­chem. J. 112, 149-166.
  • 5. Krebs, H.A., Speake, R.N. & Hems, R. (1965) Acceleration of renal gluconeogenesis by ke­tone bodies and fatty acids. Biochem. J. 94, 712-720.
  • 6. Goldstein, L., Solomon, R.J., Perlman, D.F., McLaughlin, P.M. & Taylor, M.A. (1982) Ke­tone body effect on glutaminę metabolism in isolated kidneys and mitochondria. Am. J. Physiol. 243. F181-187.
  • 7. Zabłocki, K. & Bryla, J. (1989) Utilization of alanine for glucose formation in isolated rab­bit kidney-cortex tubules. FEBS Lett. 259. 144-148.
  • 8. Michoudet, Ch.. Martin, G. & Baverel, G. (1988) Pyruvate carboxylation in glutaminę synthesis from alanine by isolated guinea-pig renal cortical tubules. Pflugers Arch. 412, 7-11.
  • 9. Zabłocki, K. & Bryła, J. (1988) Effect of glyc­erol on gluconeogencsis in isolated rabbit kid­ney-cortex tubules. Biochim. Biophys. Acta 970, 231-240.
  • 10. Lietz, T. & Bryła, J. (1995) Glycerol and lac­tate induce reciprocal changes in glucose for­mation and glutaminę production in isolated rabbit kidney-cortex tubules incubated with aspartate. Arch. Biochem. Biophys. 321, 501- 509.
  • 11. Baverel, G., Martin, G. & Michoudet, Ch. (1990) Glutaminę synthesis from aspartate in guinea-pig renal cortex. Biochem. J. 268, 437-442.
  • 12. Zabłocki, K, Gemel, J. & Bryła, J. (1983) The inhibitory effect of octanoate, palmitate and oleate on glucose formation in rabbit kidney tubules. Biochim. Biophys. Acta 757, 111— 118.
  • 13. Exton, J.H. & Park, C.R. (1967) Control of gluconeogenesis in liver. J. Biol. Chem. 242, 2622-2636.
  • 14. Pilkis, S.J., Rion, J.P. & Claus, T.H. (1976) Hormonal control of l14C]glucose synthesis from [14Cldihydroxyacetone and glycerol in isolated liver hepatocytes. J. Biol. Chem. 251, 7841-7852.
  • 15. Bergmeyer, H.U. (1965) Methods of Enzy­matic Analysis. Verlag Chemie, Weinheim; Academic Press, New York, London.
  • 16. Chang, J., Knecht, R. & Braun, D.G. (1983) Amino acid analysis in the picomole range by precolumn derivatization and high-perform­ance liquid chromatography. Methods Enzy- mol. 91,41-48.
  • 17. Lemieux, G., Berkofsky, J., Lemieux, C., Qucnneville, A. & Marsolais, M. (1988) Real importance of alanine in renal metabolism: in vitro studies in rat and dog. Am. J. Physiol. 255, R42-R45.
  • 18. Baverel, G., Genoux, C., Forrisier, M. & Pel­let, M. (1980) Fate of glutamate carbon and nitrogen in isolated guinea-pig kidney-cortex tubules. Biochem. J. 188, 873-880.
  • 19. Meister, A. (1984) Enzymology of glutaminę; in Glutaminę Metabolism in Mammalian Tis­sues (Haussinger, D. & Sies, H., eds.) pp. 3-15, Springer-Verlag, Berlin, Heidelberg.
  • 20. Lemieux, G., Pichette, C., Vinay, P. & Gou- goux, A. (1980) Cellular mechanisms of the ammoniagcnic effect of ketone bodies in the dog. Am. J. Physiol. 239, F420-F426.
  • 21. Berry, M.N., Kun, E. & Werner, H.V. (1973) Regulatory role of reducing-equivalent trans­port from substrate to oxygen in the hepatic metabolism of glycerol and sorbitol. Eur. J. Biochem. 33, 407-417.
  • 22. Efthivoulou, M.-A., Philips, J.W. & Berry, M.N. (1995) Abolition of the inhibitory cffect of ethanol oxidation on gluconeogenesis from lactate by asparaginc or low concentrations of ammonia. Biochim. Biophys. Acta 1244, 303-310.
  • 23. Sugano, T., NTishimura, K., Sogabe, N., Shiota, M., Oyama, N., Noda, S. & Ohta, M. (1988) Ca-Dependent activation of the malate-aspartate shuttle by norepinephrine and vasopressin in perfused rat liver. Arch. Biochem. Biophys. 264, 144-154.
  • 24. Berry, M.N., Phillips, J.W. & Grivell, A.R. (1992) Interactions between mitochondria and cytoplasm in isolated hepatocytes. Curr. Top. Cell. Regul. 33, 309-328.
  • 25. Walajtys-Rodc, E., Zapareto,«)., Moehren, G. & Hoek, J.B. (1992) The role of matrix calcium in the enhancement of mitochondrial pyru­vate carboxylation by glucagon pretreatment. J. Biol. Chem. 267, 370-379.
  • 26. Siess, E.A., Banik, E. & Neugebauer. S. (1988). Control of pyruvate dehydrogenase activity by the pyridine nucleotide redox state in mitochondria from rat liver. Eur. J. Bio­chem. 173, 36^-374.
  • 27. Scholz, R., Olson, M.S. & Schwab, A.J. (1978) The effect of fatty acids on the regulation of pyruvate dehydrogenase in perfused rat liver. Eur. J. Biochem. 86, 519-530.
  • 28. Klahr, S. & Hammerman, M. (1985) Renal metabolism; in The Kidney. Physiology and Physiopathology (Seldin, D.W. & Giebish, G., eds.) pp. 699-718, Raven Press, New York.
  • 29. Robinson, A. & Williamson, D.H. (1980) Physiological roles of ketone bodies as sub­strates and signals in mammalian tissues. Physiol. Rev. 60, 143-187.
  • 30. Bates, M.W., Krebs, H.A. & Williamson, D.H. (1968) Turnover rates of ketone bodies in normal, starved and alloxan diabetic rats. Biochem. J. 110, 655-661.
  • 31. Lin, E.C.C. (1977) Glycerol utilization and its regulation in mammals. Ajuiu. Rev. Biochem. 46, 765-795.
  • 32. Previs, S.F., Martin, S.K., Hazey, J.W., Soloview, M.V., Keating, A.P., Lucas, D., David, F., Koshy, J., Kirschenbaum, D.W., Tserng, K.-Y. & Brunengraber, H. (1996) Con­tributions of liver and kidneys to glycerol production and utilization in the dog. Am. J. Physiol. 271, E1118-E1124.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b80308bb-6b88-4275-9d1e-4ae908b77d3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.