PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 57 | 2 |

Tytuł artykułu

Simulation of light regimes in typical subalpine forest succession series of Eastern Tibetan Plateau

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Natural regeneration of forest depends on the light regimes of floor. Point-based methods such as fisheye photo and radiometer can not provide a full panorama of light regime of heterogeneous forest stand. Eastern Tibetan Plateau is a major forest belt characteristic of diverse forest type and topographic differentiation. Understanding the trend of changes of light regime along succession series of forest may be helpful for the management of ecosystems. Fragmented forest patches due to tectonic activity and human intervention have made this prediction difficult. We use a spatially explicit forest stand light model (tRAYci) to simulate light distribution within forest in typical subalpine forest succession series of eastern Tibetan Plateau. Due to the spatial heterogeneity of tree distribution in the subalpine area, the forest stand can be approximated with a spatially explicit model of trees. Three typical subalpine forest stands (Sabina forest (SF), Fir forest (FF) and Birch forest (BF)) are selected in the eastern Tibetan Plateau. The dominant species are sabina (Sabina saltuaria (Rehd. et Wils.) Cheng), fir (Abies faxoniana Rehd. et Wils.) and birch (Betula platyphylla Suk.) for each stand and they are spatially clumped in distribution. They represent old growth coniferous forest (SF, 330 years old), coniferous-broadleaved forest (FF, 180 ys) and pioneer broadleaved forest (BF, 40 ys). The parameters of the three-dimensional model of trees are calibrated with field measurements. The simulated values are generally consistent with observed values of radiation measured by radiometers installed in these stands and values derived from fisheye photos. Test failures may be caused by the incomplete submodel of crown as a gap free one. Light regimes in old growth and pioneer forest are much more heterogeneous than intermediate stages of forest. Light regimes of these forests are also reflected by the composition of understory herb layers.

Wydawca

-

Rocznik

Tom

57

Numer

2

Opis fizyczny

p.251-260,fig.,ref.

Twórcy

autor
  • Chinese Academy of Sciences, No. 9 Setion 4th of South Renmin Road, Chengdu 610041, China
autor
autor

Bibliografia

  • Alton P.B., North P. 2007 – Interpreting shallow, vertical nitrogen profiles in tree crowns: A three-dimensional, radiative-transfer simulation accounting for diffuse sunlight – Agric. Forest Meteorol. 145: 110–124.
  • Bartelink H.H. 1998 – Radiation interception by forest trees: a simulation study on effects of stand density and foliage clustering on absorption and transmission – Ecol. Model. 105: 213–225.
  • Brown M.J., Parker G.G. 1994 – Canopy light transmittance in a chronosequence of mixed-species deciduous forests – Can. J. For. Res. 24: 1694–1703.
  • Brunner A. 1998 – A light model for spatially explicit forest stand models – Forest Ecol. Manage. 107: 19–46.
  • Brunner A., Nigh G. 2000 – Light absorption and bole volume growth of individual Douglas-fir trees – Tree Physiol. 20: 323–332.
  • Canham C.D., Finzi A.C., Pacala S.W., Burbank D.H. 1994 – Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees – Can. J. For. Res. 24: 337–349.
  • Cescatti A. 1998 – Effects of needle clumping in shoots and crowns on the radiative regime of a Norway spruce canopy – Ann. Sci. For. (Paris), 55: 89–102.
  • Chen J.M., Cihlar J. 1995 – Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods – IEEE Trans. Geos. Remote Sens. 33: 777–787.
  • Chen J.M., Blanken P.D., Black T.A., Guilbeault M., Chen S. 1997 – Radiation regime and canopy architecture in a boreal aspen forest – Agric. Forest Meteorol. 86: 107–125.
  • da Silva D., Balandier P., Boudon F., Marquier A., Pradal C., Godin C., Sinoquet H. 2007 – Modeling of light transmission under heterogeneous forest canopy: model description and validation (In: 5th International Workshop on FunctionalStructural Plant Models) – Napier, New Zealand, pp. 58–61.
  • de Castro F. 2000 – Light spectral composition in a tropical forest: measurements and model – Tree Physiol. 20: 49–56.
  • Federer C.A., Tanner C.B. 1966 – Spectral Distribution of Light in the Forest – Ecology, 47: 555–560.
  • Gersonde R., Battles J.J., O’Hara K.L. 2004 – Characterizing the light environment in Sierra Nevada mixed-conifer forests using a spatially explicit light model – Can. J. For. Res. 34: 1332–1342.
  • González J.A., Calbó J. 2002 – Modelled and measured ratio of PAR to global radiation under cloudless skies – Agric. Forest Meteorol. 110: 319–325.
  • Hardy J.P., Melloh R., Koenig G., Marks D., Winstral A., Pomeroy J.W., Link T. 2004 – Solar radiation transmission through conifer canopies – Agric. Forest Meteorol. 126: 257–270.
  • Kato S., Komiyama A. 2002 – Spatial and seasonal heterogeneity in understory light conditions caused by differential leaf flushing of deciduous overstory trees – Ecolog. Reser. 17: 687–693.
  • Landsberg J.J., Prince S.D., Jarvis P.G., McMurtrie R.E., Luxmoore R., Medlyn B.E. 1997 – Energy conversion and use in forests: an analysis of forest production in terms of radiation utilisation efficiency ε (In: The Use of Remote Sensing in the Modelling of Forest Productivity, Eds H.L. Gholz, K. Nakane, H. Skimoda) – Kluwer, Dordrecht, pp. 273–298.
  • Law B., Cescatti A., Baldocchi D.D. 2001 – Leaf area distribution and radiative transfer in open-canopy forests: implications for mass and energy exchange – Tree Physiol. 21: 777–787.
  • Leach M.K., Givnish T.J. 1999 – Gradients in the composition, structure, and diversity of remnant oak savannas in southern Wisconsin – Ecol. Monogr. 69: 353–374.
  • Li C.B. 1990 – Ecological research on Sichuan Forest – Sichuan Sci-Tech Publishing House, Chengdu.
  • Li X., Strahler A.H. 1986 – Geometric-Optical bidirectional reflectance modeling of a conifer Forest Canopy – IEEE Trans. Geos. Remote Sens. GE-24: 906–919.
  • MacFarlane D.W., Green E.J., Brunner A., Amateis R.L. 2003 – Modeling loblolly pine canopy dynamics for a light capture model – Forest Ecol. Manage. 173: 145–168.
  • McMurtrie R., Wolf L. 1983 – Above- and below-ground growth of forest stands: a carbon budget model – Ann. Bot. 62: 389–396.
  • Monteith J.L. 1977 – Climate and the efficiency of crop production in Britain – Philos. Trans. R. Soc. London, B 281: 277–294.
  • Oker-Blom P., Lappi J., Smolander H. 1991 – Radiation regime and photosynthesis of coniferous stands (In: Photon–Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology, Eds R.B. Myneni, J. Ross) – Springer, Berlin, pp. 469–499.
  • Pacala S.W., Canham C.D., Saponara J., Silander J.A., Kobe R.K., Ribbens E. 1996 – Forest models defined by field measurements: II. Estimation, error analysis and dynamics – Ecol. Monogr. 66: 1–43.
  • Rautiainen M., Stenberg P. 2005 – Simplified tree crown model using standard forest mensuration data for scots pine – Agric. Forest Meteorol. 128: 123–129.
  • Röhrig M., Stützel H., Alt C. 1999 – A three-dimensional approach to modeling light interception in heterogeneous canopies – Agron. J. 91: 1024–1032.
  • Sichuan Vegetation Study Group. 1980 – Vegetation of Sichuan – Sichuan People’s Press, Chengdu.
  • Taylor A.H., Qin Z.S., Liu J. 1996 – Structure and dynamics of subalpine forests in the Wang Lang Nature Reserve, Sichuan, China – Plant Ecol. 124: 25–38.
  • Wang Q., Wang K.Y. 2004 – Characteristics of subalpine forest structure in Wanglang national natural reserve (In: Processes of subalpine forest ecosystems in the west of Sichuan, Ed. K.Y. Wang) – Sichuan Sci-Tech Publishing House, Chengdu, pp. 28–47.
  • Wang Q., Wu N., Luo P., Yi S.L., Bao W.K., Shi F.S. 2007 – Moss growth rate and its environmental determinants in subalpine coniferous forest and clear-cut land in eastern Tibetan Plateau, China – J. Plant Ecol. 31: 464–469.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b7fb84a9-e511-4b1e-ad9b-790f5d81e853
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.