EN
A natural rubber degrading candidate was isolated from a soil sample from Aswan, Egypt. The strain was able to grow on natural rubber as a sole source for carbon and energy. According to its degradation behavior, it grew adhesively and in direct contact with the rubber substrate and led to disintegration of the material during cultivation. Furthermore, this strain was not able to form a clear zone (translucent halos) around bacterial colonies after cultivation on NR latex plates. Taxo-nomic analysis of the strain based on partial 16S rRNA similarity examinations indicated that bacterial candidate belongs to genus Achromobacter sp. Schiff's reagent staining tests performed during cultivation of the strain on NR latex gloves of different sizes, treated or nontreated, revealed that the strain was able to colonize the rubber surface. Formation of bacterial films and occurrence of compounds containing aldehyde groups during cultivation was observed. The tested strain showed a higher colonization efficiency on small or treated pieces of NR latex gloves, while a lower colonization efficiency was recognized when grown on large or nontreated NR latex gloves. Plackett-Burman experimental design, based on numerical modeling, was applied to evaluate the significance of culture conditions affecting natural rubber degradation by the bacterial candidate. Eleven variables through fourteen trials were studied simultaneously. Based on rubber mineralization data, the highest positive variables affecting rubber degradation were NR granules, K₂HPO₄ Na-succinate and NH₄Cl, while MgSO₄ x 7H₂O and KH₂PO₄ were the lowest significant variables.