PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2000 | 59 | 2 |

Tytuł artykułu

Structural changes of mitochondria during free radical-induced apoptosis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The initial proposal for apoptosis stressed nuclear change (condensation of chromatin) and the intactness of intracellular organelles, including mitochondria, based on light and electron microscopic observations. However, data have accumulated to demonstrate that the opening of megachannels of mitochondrial membranes, resulting in the swelling of the organelles, notably by Ca²⁺ and free radicals, is the crucial step in the apoptotic processes of the cell. Application of fluorescent dyes to mitochondria, combined with flow cytometry, has made it possible to detect subtle changes in the structure and function of the organelles related to apoptosis. The present article overviews structural aspects of mitochondria related to apoptosis, including the free radical-induced formation of megamitochondria.

Wydawca

-

Czasopismo

Rocznik

Tom

59

Numer

2

Opis fizyczny

p.61-75,fig.

Twórcy

  • Nagoya University School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
autor

Bibliografia

  • 1. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell, 41: 899–906.
  • 2. Ball EH, Singer SJ (1982) Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc Natl Acad Sci USA, 79: 123–126.
  • 3. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol, 130: 1910–1917.
  • 4. Berger KH, Sogo LF, Yaffe MP (1997) Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J Cell Biol, 136: 545–553.
  • 5. Boe R, Gjertsen BT, Vintermyr OK, Houge G, Lanotte M, Doskeland SO (1991) The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp Cell Res, 195: 237–246.
  • 6. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell, 74: 597–608.
  • 7. Boldogh I, Vojtov N, Karmon S, Pon LA (1998) Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins, Mmm1p and Mdm10p. J Cell Biol, 141: 1371–1381.
  • 8. Bossy-Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J, 17: 37–49.
  • 9. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J, 128: 617–630.
  • 10. Bright J, Khar J, Khar A (1994) Apoptosis: programmed cell death in health and disease. Biosci Rep, 14: 67–81.
  • 11. Burgess SM, Delannoy M, Jensen RE (1994) MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol, 126: 1375–1391.
  • 12. Cadenas E, Boveris A, Ragan CI, Stoppani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinolcytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys, 180: 248–257.
  • 13. Camilleri-Broet S, Vanderwerff H, Caldwell E, Hockenbery D (1998) Distinct alterations in mitochondrial mass and function characterize different models of apoptosis. Exp Cell Res, 239: 277–292.
  • 14. Cleary ML, Sklar J (1985) Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA, 82: 7439–7443.
  • 15. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz, MA, Lassota P, Traganos F (1992) Features of apoptotic cells measured by flow cytometry. Cytometry, 13: 795–808.
  • 16. Don MM, Ablett G, Bishop CJ, Bundesen PG, Donald KJ, Searle J, Kerr JF (1977) Death of cells by apoptosis following attachment of specifically allergized lymphocytes in vitro. Austr J Exp Biol Med Sci, 55: 407–417.
  • 17. Dudani AK, Gupta RS (1987) Effect of chlorpromazine and trifluoperazine on cytoskeletal components and mitochondria in cultured mammalian cells. Tiss Cell, 19: 183–196.
  • 18. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter, Sadoul R, Mazzei G, Nichols A, Martinou JC (1998) Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol, 143: 217–224.
  • 19. Faa G, Ledda-Columbano GM, Ambu R, Congiu T, Coni P, Riva A, Columbano A (1994) An electron microscopic study of apoptosis induced by cycloheximide in rat liver. Liver, 14: 270–278.
  • 20. Garland JM, Halestrap A (1997) Energy metabolism during apoptosis. Bcl-2 promotes survival in hematopoietic cells induced to apoptose by growth factor withdrawal by stabilizing a form of metabolic arrest. J Biol Chem, 272: 4680–4688.
  • 21. Gonzalez-Garcia M, Perez-Ballestero R, Ding L, Duan L, Boise LH, Thompson CB, Nunez G (1994) bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development, 120: 3033–3042.
  • 22. Guan K, Farh L, Marshall TK, Deschenes RJ (1993) Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr Genet, 24: 141–148.
  • 23. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol, 258: C755–C786.
  • 24. Gupta RS (1990) Microtubules, mitochondria, and molecular chaperones: a new hypothesis for in vivo assembly of microtubules. Biochem Cell Biol, 68: 1352–1363.
  • 25. Hales KG, Fuller MT (1997) Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell, 90: 121–129.
  • 26. Heggeness MH, Simon M, Singer SJ (1978) Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci USA, 75: 3863–3866.
  • 27. Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, Shaw JM (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol, 143: 359–373.
  • 28. Jacobson MD, Raff MC (1995) Programmed cell death and Bcl-2 protection in very low oxygen. Nature, 374: 814–816.
  • 29. Jamet-Vierny C, Contamine V, Boulay J, Zickler D, Picard M (1997) Mutations in genes encoding the mitochondrial outer membrane proteins Tom70 and Mdm10 of Podospora anserina modify the spectrum of mitochondrial DNA rearrangements associated with cellular death. Mol Cell Biol, 17: 6359–6366.
  • 30. Jones BA, Fangman WL (1992) Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev, 6: 380–389.
  • 31. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA, 95: 4997–5002.
  • 32. Karbowski M, Kurono C, Wozniak M, Ostrowski M, Teranishi, Nishizawa Y, Usukura J, Soji T, Wakabayashi T (1999) Free radical-induced megamitochondria formation and apoptosis. Free Rad Biol Med, 26: 396–409.
  • 33. Karbowski M, Kurono C, Wozniak M, Ostrowski M, Teranishi, Soji T, Wakabayashi T (1999) Cycloheximide and 4- OH-TEMPO suppress chloramphenicol-induced apoptosis in RL-34 cells via the suppression of the formation of megamitochondria. Biochim Biophys Acta, 1449: 25–40.
  • 34. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit J Cancer, 26: 239–257.
  • 35. Kinnally KW, Antonenko YN, Zorov DB (1992) Modulation of inner mitochondrial membrane channel activity. J Bioenerget Biomembr, 24: 99–110.
  • 36. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis Science, 275: 1132–1136.
  • 37. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA, 96: 5752–5757.
  • 38. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol, 5: 227–231.
  • 39. Leterrier JF, Rusakov DA, Nelson BD, Linden M (1994) Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microsc Res Techniq, 27: 233–261.
  • 40. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91: 479–489.
  • 41. Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol, 270: F700–F708.
  • 42. Maftah A, Petit JM, Ratinaud MH, Julien R (1989) 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state. Biochem Biophys Res Comm, 164: 185–190.
  • 43. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol, 146: 3–15.
  • 44. Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty, PB, Hockenbery DM (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol, 138: 449–469.
  • 45. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson, EP, Casciola-Rosen LA, Rosen A (1998) The caspase3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol, 140: 1485–1495.
  • 46. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med, 184: 1155–1160.
  • 47. Markossian KA, Poghossian AA, Paitian NA, Nalbandyan RM (1978) Superoxide dismutase activity of cytochrome oxidase. Biochem Biophys Res Comm, 81: 1336–1343.
  • 48. Martin SJ, Green DR, Cotter TG (1994) Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem Sci, 19: 26–30.
  • 49. Mikles-Robertson F, Feuerstein B, Dave C, Porter CW (1979) The generality of methylglyoxal bis(guanylhydrazone)-induced mitochondrial damage and the dependence of this effect on cell proliferation. Cancer Res, 39: 1919–1926.
  • 50. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura, Yamazaki H, Hirokawa N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell, 79: 1209–1220.
  • 51. Negrini M, Silini E, Kozak C, Tsujimoto Y, Croce CM (1987) Molecular analysis of mbcl-2: structure and expression of the murine gene homologous to the human gene involved in follicular lymphoma. Cell, 49: 455–463.
  • 52. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74: 609–619.
  • 53. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL (1998) The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem, 273: 7770–7775.
  • 54. Pathak SN, Porter CW, Dave C (1977) Morphological evidence for an antimitochondrial action by methylglyoxal-bis(guanylhydrazone). Cancer Res, 37: 2246–2250.
  • 55. Pereira AJ, Dalby B, Stewart RJ, Doxsey SJ, Goldstein, LS (1997) Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J Cell Biol, 136: 1081–1090.
  • 56. Petit PX, Lecoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML (1995) Alterations in mitochondrial structure and function are early events of dexamethasoneinduced thymocyte apoptosis. J Cell Biol, 130: 157–167.
  • 57. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett, 396: 7–13.
  • 58. Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel, DK, Lugade AG, Singer VL, Haugland RP (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem, 44: 1363–1372.
  • 59. Schulze E, Kirschner M (1987) Dynamic and stable populations of microtubules in cells. J Cell Biol, 104: 277–288.
  • 60. Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocrine Rev, 14: 133–151.
  • 61. Searle J, Lawson TA, Abbott PJ, Harmon B, Kerr JF (1975) An electron-microscope study of the mode of cell death induced by cancer-chemotherapeutic agents in populations of proliferating normal and neoplastic cells. J Pathol, 116: 129–138.
  • 62. Sesaki H, Jensen RE (1999) Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol, 147: 699–706.
  • 63. Shepard KA, Yaffe MP (1999) The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J Cell Biol, 144: 711–720.
  • 64. Shimizu S, Eguchi Y, Kamiike W, Itoh Y, Hasegawa J, Yamabe K, Otsuki Y, Matsuda H, Tsujimoto Y (1996) Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL. Cancer Res, 56: 2161–2166.
  • 65. Shimizu S, Eguchi Y, Kosaka H, Kamiike W, Matsuda H, Tsujimoto Y (1995) Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature, 374: 811–813.
  • 66. Skulachev VP (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett, 397: 7–10.
  • 67. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol, 143: 351–358.
  • 68. Sogo LF, Yaffe MP (1994) Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Cell Biol, 126: 1361–1373.
  • 69. Sorgato MC, Moran O (1993) Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Critical Rev Biochem Mol Biol, 28: 127–171.
  • 70. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med, 184: 1331–1341.
  • 71. Szabo I, Zoratti M (1991) The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J Biol Chem, 266: 3376–3379.
  • 72. Szabo I, Zoratti M (1992) The mitochondrial megachannel is the permeability transition pore. J Bioenerg Biomemb, 24: 111–117.
  • 73. Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell, 93: 1147–1158.
  • 74. Teranishi M, Karbowski M, Kurono C, Soji T, Wakabayashi (1999) Two types of the enlargement of mitochondria related to apoptosis: simple swelling and the formation of megamitochondria. J Electron Microsc, 48: 637–651.
  • 75. Teranishi M, Karbowski M, Kurono C, Nishizawa Y, Usukura J, Soji T, Wakabayashi T (1999) Effects of coenzyme Q10 on changes in the membrane potential and rate of generation of reactive oxygen species in hydrazine- and chloramphenicol-treated rat liver mitochondria. Arch Biochem Biophys, 366: 157–167.
  • 76. Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science, 228: 1440–1443.
  • 77. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J, 191: 421–427.
  • 78. Vander HM, Chandel NS, Williamson EK, Schumacker, PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria [see comments]. Cell, 91: 627–637.
  • 79. Varkey J, Chen P, Jemmerson R, Abrams JM (1999) Altered cytochrome c display precedes apoptotic cell death in Drosophila. J Cell Biol, 144: 701–710.
  • 80. Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 335: 440–442.
  • 81. Wakabayashi T, Horiuchi M, Sakaguchi M, Misawa K, Onda, Iijima M, Allmann DW (1984) Mechanism of hepatic megamitochondria formation by ammonia derivatives. Correlation between structure of chemicals and their ability to induce the formation of megamitochondria. Eur J Biochem, 143: 455–465.
  • 82. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol, 68: 251–306.
  • 83. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked [see comments]. Science, 275: 1129–1132.
  • 84. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G (1996) Mitochondrial control of nuclear apoptosis. J Exp Med, 183: 1533–1544.
  • 85. Zhu Q, Hulen D, Liu T, Clarke M (1997) The cluA- mutant of Dictyostelium identifies a novel class of proteins required for dispersion of mitochondria. Proc Natl Acad Sci USA, 94: 7308–7313.
  • 86. Zoratti M, Szabo I (1994) Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomemb, 26: 543–553.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b6bf922b-11dc-4268-b8f6-a87ba4b7e96e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.