PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 2 |

Tytuł artykułu

The role of mutation frequency decline and SOS repair systems in methyl methanesulfonate mutagenesis

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Methyl methanesulfonate (MMS) is an SN2 type alkylating agent which predominantly methylates nitrogen atoms in purines. Among the methylated bases 3meA and 3meG are highly mutagenic and toxic. The excision of these lesions leads to the formation of apurinic (AP) sites and subsequently to AT-->TA or GC-->TA transversions. The in vivo method based on phenotypic analysis of Arg+ revertants of Escherichia coli K12 and sensitivity to T4 nonsense mutants has been used to estimate the specificity of MMS induced mutations. In the E. coli arg-his-thr- (AB1157) strain MMS induces argE3(oc)-->Arg+ revertants of which 70-80% arise by supL suppressor formation as a result of AT-->TA transversions. The remaining 20-30% arise by supB and supE(oc) suppressor formation as a result of GC-->AT transitions. The level of AT-->TA transversions decreases during starvation. This is a consequence of action of the repair mechanism called mutation frequency decline. This system which is a transcription coupled variant of nucleotide excision repair was discovered in UV induced mutations. We describe the mutation frequency decline phenomenon for MMS mutagenesis. MMS is a very efficient inducer of the SOS response and a umuDC dependent mutagen. In MMS treated E. coli cells mutated in umuDC genes the class of AT-->TA transversions dramatically diminishes. A plasmid bearing UmuD(D')C proteins can supplement chromosomal deletion of umuDC operon: a plasmid harbouring umuD'C is more efficient in comparison to that harbouring umuDC. Moreover, plasmids isolated from MMS treated and transiently starved E. coli AB1157 cells harbouring umuD(D')C genes have shown the repair of AP sites by a system which involves the UmuD'C or at least UmuD' protein.

Wydawca

-

Rocznik

Tom

45

Numer

2

Opis fizyczny

p.523-533,fig.

Twórcy

autor
  • Polish Academy of Sciences, A.Pawinskiego 5A, 02-106 Warsaw, Poland

Bibliografia

  • 1. Singer, B. & Grunberger, D. (1983) Molecular Biology of Mutagens and Carcinogens; pp. 1-347, Plenum, New York.
  • 2. Frei, J.V., Swenson, D.H., Warren, W. & Lawley. P.D. (1978) Alkylation of deoxyribo­nucleic acid in vivo in various organs of C57B1 mice by the carcinogens JV-methyl-iV-nitro- sourea, iV-ethyl-N-nitrosourea and ethyl meth- anesulfonate in relation to induction of thymic lymphoma. Biochem. J. 174, 1031-1044.
  • 3. Singer, B. (1976) All oxygens in nucleic acids react with carcinogenic ethylating agents. Na­ture 264, 333-339.
  • 4. Lawley, P.D. (1984) Carcinogenesis by alky­lating agents; in Chemical Carcinogenesis (Searle, C.E., ©d.) ACS Monograph 182, pp. 325-484, American Chemical Society, Washington.
  • 5. Loechler, E.L. (1994) A violation of the Swain- Scott Principle, and S>j2 reaction mecha­nisms, explains why carcinogenic alkylating agents can form different proportions of ad- ducts at oxygen versus nitrogen in DNA. Chem. Res. Toxicol 7, 277-280.
  • 6. Lawley, P.D. & Tatcher, P.J. (1970) Methyla- tion of DNA in cultured mammalian cells by MNNG: Influence of cellular thiol concentration on extent of methylation and O of gua­nine as a site of methylation. Biochem. J. 116, 693-707.
  • 7. Janion, C. (1995) Mechanisms of action of methyl methanesulfonate on Escherichia coli: Mutagenesis, DNA damage and repair. Adv. Biochem. 41, 308-313.
  • 8. Pegg, A.E. (1984) Methylation of the O6 posi­tion of guanine in DNA is the most likely initi­ating event in carcinogenesis by methylating agents. Cancer Invest. 2, 223-231.
  • 9. Tudek, B., Boiteux, S. & Laval, J. (1992) Bio­logical properties of imidazole ring-open N7 methyl-guanine in M13mpl8 phage DNA. Nu­cleic Acids Res. 20, 3079-3084.
  • 10. Boiteux, S. & Laval, J. (1983) Imidazole ring- opened guanine: An inhibitor of DNA synthe­sis. Biochem. Biophys. Res. Commun. 110, 625-631.
  • 11. Foster, P.L. & Eisenstadt, E. (1985) Induction of tranevoroion mutations in Escherichia coli by N-methyl-N-nitrosoguanidine is SOS de­pendent. J. Bacteriol. 163, 213-220.
  • 12. Sledziewska-Gojska, E. & Janion, C. (1989) Al­ternative pathways of methyl methanesulfo- nate-induced mutagenesis in Escherichia coli. Molec. Gen. Genet. 216, 126-131.
  • 13. Grzesiuk, E. & Janion, C. (1994) The fre­quency of MMS-induced, umuDC-dependent, mutation declines during starvation in Escherichia coli. Molec. Gen. Genet. 245, 486- 492.
  • 14. Loechler, E.L., Green, C.L. & Essigmann, Ü.M. (1984) In vivo mutagenesis by O -methylgua- nine built into a unique site in a viral genome. Proc. NatL Acad. Sei. U.S.A. 81, 6271-6275.
  • 15. Sledziewska-Göjska, E., Grzesiuk, E., Plachta, Janion, C. (1992) Mutagenesis of Escheri­chia coli: A method of determining mutagenic specificity by analysis of tRNA supressors. Mutagenesis 7, 41-46.
  • 16. van Zeeland, A.A. (1988) Molecular dosimetry of alkylating agents: Quantitative comparison of genetic effects on the basis of DNA adduct formation. Mutagenesis 3, 179-191.
  • 17. Todd, P.A., Monti-Bragadin, C., Glickman,B.W. (1979) MMS mutagenesis in strains of Escherichia coli carrying the R46 mutagenic enhancing plasmid: Phenotypic analysis of Arg* revertants. Mutation Res. 62, 227-237.
  • 18. Kato, T., Shinoura, Y., Templin, A., Clark, A.J. (1980) Analysis of ultraviolet lightrinduced suppressor nutation in the strain of Escheri­chia coli K12 ABl 157. An application for mo­lecular mechanism of UV mutagenesis. Molec. Gen. Genet. 180, 283-291.
  • 19. Shinoura, Y., Kato, T., Glickman, B.W. (1983) A rapid and simple method for the determina­tion of base substitution and frameshift speci­ficity of mutagens. Mutation Res. 111,43-49.
  • 20. Sargentini, N.J. & Smith, K.C. (1989) Muta­tional spectrum analysis of urauC-independent and umuC-dependent-radiation mutagenesis in Escherichia coli. Mutation Res. 211, 193- 203.
  • 21. Janion, C. & Grzesiuk, E. (1990) Effect of umuC on EMS-induced mutagenesis in Es­cherichia coli deficient in mismatch repair; in Mutation and Environment (Mendelsohn, M.L. & Albertini, R.J., eds.) Part A, pp. 145-153, Wiley-Liss, New York.
  • 22. Witkin, E.M. (1956) Time, temperature and protein synthesis: A study of ultraviolet-in­duced mutation in bacteria. Cold Spring Har­bor Symp. Qnnnt Riol 21. 193-140.
  • 23. Bockrath, R.C. & Palmer, J.E. (1977) Differen­tial repair of premutational UV-lesion of tRNA genes in E. coli. Molec. Gen. Genet. 156, 133-140.
  • 24. Mellon, I., Spivak, G. & Hanawalt, P.C. (1987) Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241- 249.
  • 25.Selby, C.P. & Sancar, A. (1990) Transcription preferentially inhibits nucleotide excision re­pair of the template DNA strand in vitro. J. Biol Chem. 265, 58-63.
  • 26. Selby, C.P., Witkin, E.M. & Sancar. A. (1991) Escherichia coli mfd mutant deficient in "Muta­tion Frequency Decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc. Natl Acad. Sci. U.S.A. 88.11574-11578.
  • 27. Witkin, E.M. (1969) Ultraviolet-induced muta­tion and DNA repair. Annu. Rev. Microbiol. 23, 487-514.
  • 28. Selby, C.P. & Sancar, A. (1994) Mechanisms of transcription-repair coupling and mutation frequency decline. Microbiol. Rev. 58, 317-327.
  • 29. Grzesiuk, E. & Janoin, C. (1996) MMS-induced mutagenesis and DNA repair in Escherichia coli dnaQ49: Contribution of UmuD' to DNA repair. Mutation Res. 362, 147-154.
  • 30. Sweder, K.S., Verhage, R.A., Crowley, D.J., Crouse, G.F., Brouwer, J., Hanawalt, P.C. (1996) Mismatch repair mutants in yeast are not defective in transcription-coupled DNA re­pair of UV-induced DNA damage. Genetics 143,1127-1137.
  • 31. Mellon, I. & Champe, G.N. (1996) Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleo- tide excision repair of the lactose operon in Escherichia coli. Proc. Natl Acad. Sei. U.S.A. 93, 1292-1297.
  • 32. Li, B.H. & Bockrath, R.C. (1995) Mutation fre­quency decline in Escherichia coli. I. Effects of defects in mismatch repair. Molec. Gen. Genet. 249. 585-5S0.
  • 33. Grzesiuk, E. & Janion, C. (1998) Mutation fre­quency decline in MMS-treated E. coli K12 mutS strains. Mutagenesis 13, 127-132.
  • 34. Lindahl, T., Sedgwick, B., Sekiguchi, M., Nakabeppu, Y. (1988) Regulation and expres­sion of adaptive response to alkylating agents. Annu. Rev. Riochem. 57, 133-157.
  • 35. Friedberg, E.C., Walker, G„ Siede, W. (1995) Nucleotide exision repair in procaryotes; in DNA Repair and Mutagenesis (Friedberg, E.C., Walker, G. & Siedge, W., eds.) pp. 191-225, ASM Press, Washington.
  • 36. de Oliveira, R.C., Laval, J. & Boiteux, S. (1986) Induction of SOS and adaptive responses by alkylating agents in Escherichia coli mutants deficient in 3-methyladenme-DNA glycosylase activities. Mutation Res. 183, 11-20.
  • 37. Radman, M. (1974) Phenomenology of an in­ducible mutagenic pathway in Escherichia coli: SOS repair hypothesis; in Molecular and Envi­ronmental Aspects of Mutagenesis (Prakash, L., Scherman, F., Miller, M., Lawrence, 0. & Ta­bor, H.W., eds.) vol. 3, pp. 128-142, Charles C. Thomas Publisher, Springfield.
  • 38. Little, J.W. & Mount, D.W. (1982) The SOS regulatory system of E. coli. Cell 29, 11-22.
  • 39. Little, J.W. (1983) The SOS regulatory sys­tem: Control of its state by the level of RecA protease. J. Mol Biol. 167, 791-808.
  • 40. Sommer, S., Knezevic, J., Bailone, A., De- voret, R. (1993) Induction of only one SOS operon, umuDC, is required for SOS muta­genesis in Escherichia coli. Molec. Gen. Genet. 239, 137-144.
  • 41. Levis, L.K., Harlow, G.R., Gregg-Jolly, L.A., Mount, D.W. (1994) Identification of high af­finity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J. Mol Biol 241, 507-523.
  • 42. Bridges, B.A. & Woodgate, R. (1985) The two- step model of bacterial UV mutagenesis. Mu­tation Res. 150, 133-139.
  • 43. Bridges, B.A. & Woodgate, R. (1985) Muta­genic repair in Escherichia coli: Products of the recA gene and of the umuD and umuC genes act at different steps in UV-mutagenesis. Proc. NatL Acad. Sci. U.S.A. 82, 4193-4197.
  • 44. Rajagopalan, M., Lu, C., Woodgate, R., O'Don- nell, M., Goodman, M.F. & Echols, H. (1992) Activity of the purified mutagenesis proteins UmuC, UmuD', and RecA in replication by­pass of an abasic DNA lesion by DNA po­lymerase III. Proc. Natl Acad. Sci U.S.A. 89, 10777-10781.
  • 45. Hagenesee, M.E., Timme, T., Bryan, S.K. & Moses, R.E. (1987) DNA polimerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 84, 4195-4199.
  • 46. Kitagawa, Y., Akaboshi, E., Shinagawa, H., Horii, T., Ogawa, H. & Kato, T. (1985) Struc­tural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. Proc. Natl. Acad. Sci U.S.A. 82, 4336-4340.
  • 47. Woodgate, R. & Levine, A.S. (1996) Damage Inducible Mutagenesis: Recent Insights into the activities of the Umu family of mutagene­sis proteins; in Cancer Surveys, Genetic Insta­bility in Cancer; vol. 28, pp. 117-136, Imp. Cane. Res. Fund.
  • 48. Burckhardt, S.E., Woodgate, R., Scheuer­mann, R.H. & Echols, H. (1988) UmuD muta­genesis protein in Escherichia coli: Overpro­duction, purification, and cleavage by RecA. /Voc. Natl Acad. Sci. U.S. A 85, 1811-1815.
  • 49. Woodgate, R., Rajagopalan, M., Lu, C. & Echols, H. (1989) UmuC mutagenesis protein in Escherichia coli: Purification and interac­tion with UmuD and UmuD'. Proc. Natl. Acad. ScL U.S.A. 86, 7301-7305.
  • 50. Battista, J.R., Ohta, T., Nohmi, T., Sun, W. & Walker, G.C.(1990) Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 87, 7190-7194.
  • 51. Bruck, I., Woodgate, R., McEntee, K. & Good­man, M.F. (1996) Purification of a soluble UmuD'C complex from Escherichia coli: Coop­erative binding of UmuD'C to single-stranded DNA. J. Biol. Chem. 271, 10767-10774.
  • 52. Petit, M.A., Bedale, W., Osipiuk, J., Lu, C., Ra- jagopalan, M., Mclnerney, P., Goodman, M.F. & Echols, H. (1994) Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli. J. Biol. Chem. 269, 23824-23849.
  • 53. Peat, T.S., Frank, E.G., McDonald, J.P., Le- vine, A.S., Woodgate, R. & Hendrickson, W.A. (1996) Structure of the UmuD' protein and its regulation in the response to DNA damage. Nature 380, 727-730.
  • 54.Sweasy, J.B., Witkin, E.M., Sinha, N. & Roeg- ner-Maniscalco, V. (1990) RecA protein of Escherichia coli has a third essential role in SOS mutator activity. J. Bacteriol. 172, 3030-3036.
  • 55. Bailone, A., Sommer, S., Knezevic, J., Dutreix, M. & Devoret, R. (1991) A RecA protein mu­tant deficient in its interaction with the UmuDC complcx. Biochimie 73, 471-478.
  • 56. Bridges, B.A., Mottershead, R.P. & Sedgwick, S.G. (1976) Mutagenic repair in Escherichia coli, III. Requirement for a function of DNA polimerase III in ultraviolet light mutagenesis. Molec. Gen. Genet. 144, 53-58.
  • 57. Woodgate, R., Bridges, B.A., Hcrrera, G. & Blanco, M. (1987) Mutagenic repair in Escheri­chia coli. XIII, Proofreading exonuclease of DNA polymerase III holoenzyme is not opera­tional during UV mutagenesis. Mutation Res. 183, 31-37.
  • 58. Woodgate, R., Singh, M., Kulaeva, O.I., Frank, E.G., Levine, A.S. & Koch, W.H. (1994) Isola­tion and characterization of novel plasmid- encoded umuC mutants. J. Bacteriol. 176, 5011-5021.
  • 59. Schendel, P.F. & Defais, M. (1980) The role of umuC gene product in mutagenesis by simple alkylating agents. Molec. Gen. Genet. 177, 661-665.
  • 60. Grzesiuk, E. & Janion, C. (1993) Some aspects of EMS-induced mutagenesis in Escherichia coli. Mutation Res. 297, 313-321.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b4510265-678e-42d2-b0d6-095bbe77b024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.