EN
Traditionally, a drug is expected to be biologically active and at the same time be able to ensure some sort of tissue or organ specificity. The latter property is necessary to avoid undesirable side effects when toxic drugs are being used. Such requirements are difficult to achieve only by changing the chemical formula of the drug. For these reasons, within the last few years a new pharmacological concept has been developed regarding delivery of biologically active compounds by the use of macromolecular aggregates. The purpose-specific design of macromolecular aggregates, able to deliver drugs to a desired location, is based on the assumption that different functions can be assigned to the separate chemical entities forming the aggregate. With the help of such an aggregate, the biologically active compound can be designed with solely its pharmacological potency in mind and without considering any limitations imposed by inaccurate delivery, such as undesired side effects. Specific molecules of the aggregate would ensure desired compound distribution within the organism. Furthermore, other molecules forming the aggregate should fulfill additional functions, e.g. protecting the drug from degradation. Additionally, aggregates formed from amphiphilic molecules should be capable of carrying drugs that are difficult to use as therapeutic agents due to low solubility in biological fluids (e.g. Taxol) or degradation (e.g. peptides, DNA). Such aggregates can be constructed from natural or/and synthetic compounds. Taken together, this creates possibilities of extending the spectrum of drug application and allows for the introduction of new technological modifications.