PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 09 | 4 |

Tytuł artykułu

Bacterial secondary production and bacterial biomass in four Mazurian Lakes of differing trophic status

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This report presents results of four-year studies of bacterial production and biomass, and selected environmental variables (concentrations of total DOC, microbiologically labile DOC, chlorophylla) in surface pelagic waters of four Mazurian lakes of differing trophic status (oligo/mesotrophic, eutrophic, hypereutrophic, polihumic) during summer stratification periods 1994-97. Bacterial production and biomass were positively proportional to the degree of lake water eutrophication. The rates of production of bacteria and their biomass turnover were primarily dependent on concentrations of microbiologically labile organic substrates in the DOC pool. In lakes with high content of suspended particulate detritus (hypereutrophic and polihumic lakes) attached bacteria significantly predominated in total bacterial production. Importance of the "bottom-up" and "top-down" mechanisms in ecological regulation of bacterial production and biomass in the studied lakes is widely discussed.

Wydawca

-

Rocznik

Tom

09

Numer

4

Opis fizyczny

p.255-266,fig.

Twórcy

autor
  • Warsaw University, Karowa 18, 00-325 Warsaw, Poland
autor
autor

Bibliografia

  • 1. CHROST R. J., RAI H. Bacterial secondary production. Microbial Ecology of Lake PluBsee, Springer-Verlag, New York, pp 92-117, 1994.
  • 2. ROBARTS R. D., SEPHTON L. M., WICKS R. J. Labile dissolved organic carbon and water temperature as regula tors of heterotrophic bacterial activity and production in the lakes of sub-Antarctic Marion Island. Polar Biol. 11, 403, 1991.
  • 3. KIRCHMAN D. L, RICH J. H. Regulation of bacterial growth rates by dissolved organic carbon and temperature in the equatorial Pacific Ocean. Microb. Ecol. 33, 11, 1997.
  • 4. CARLSON C. A., DUCKLOW H. W. Growth of bacteriop lankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat. Microb. Ecol. 10, 69, 1996.
  • 5. CHROST R. J., The composition and bacterial utilization of DOC released by phytoplankton. Kieler Meeresforsch. Son- derh. 5, 325, 1981.
  • 6. CHROST R. J., FAUST M. A. Organic carbon release by phytoplankton: its composition and utilization by bacteriop lankton. J. Plankton Res. 5, 477, 1983.
  • 7. CUHEL R. L, TAYLOR C. D., JANNASCH H. W. Assimilatory sulfur metabolism in marine microorganisms: considerations for the application of sulphate incorporation into protein as a measurement of natural population protein synthesis. Appl. Environ. Microbiol. 43, 160, 1982.
  • 8. KIRCHMAN D. L., KONEES E., HODSON R. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49, 599, 1985.
  • 9. SIMON M., AZAM F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol. Prog. Ser. 51, 201, 1989.
  • 10. RIEMANN B., AZAM F. Measurements of bacterial protein synthesis in eutrophic aquatic environments by means of leucine incorporation. Mar. Microb. Food Webs 6, 91,1992.
  • 11. SMITH D. C, AZAM F. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar. Microb. Food Webs 6, 107, 1992.
  • 12. ROMANENKO V. J. Heterotrophic CO2 assimilation by bacterial flora of water. Microbiologia 33, 940, 1964.
  • 13. OVERBECK J. Dark CO2 uptake-biochemical background and its relevance to in situ bacterial production. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12, 38, 1979.
  • 14. WHITE D. C, BOBBIE R. J., MORRISON S. J., OOS- TERHOF D. K., TAYLOR C. W, MEETER D. A. Determination of microbial activity of estuarine detritus by relative rates of lipid biosynthesis. Limnol. Oceanogr. 22, 1089, 1977.
  • 15. MORIARTY D. J. W., WHITE D. C, WASSENBERG T. J. A convenient method for measuring rates of phospholipids synthesis in seawater and sediments: its relevance to the determination of bacterial productivity and the disturbance artefacts introduced by measurements. J. Microbiological Methods.3, 321, 1985.
  • 16. KARL D. M. Simultaneous rates of ribonucleic acid and deoxyribonucleic acid syntheses for estimating growth and cell division of aquatic microbial communities. Appl. En viron. Microbiol. 42, 802, 1981.
  • 17. KARL D. M., WINN D. C. Adenine metabolism and nucleic acids synthesis: Application to microbial oceanography. Het erotrophic activity in the sea. Plenum, pp 197-216, 1984.
  • 18. CYDZIK D, KUDELSKA D., SOSZKA H. Atlas stanu czystości jezior Polski. Instytut Ochrony Środowiska, War­szawa, 1992.
  • 19. CHROST R. J., OVERBECK J., WCISLO R. Evaluation of the [3H]thymidine method for estimating bacterial growth rates and production in the lake water: re-examination and methodological comments. Acta Microbiol. Polon. 37, 95, 1988.
  • 20. LEE S., FUHRMAN J. A. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53, 1298, 1987.
  • 21. PORTER K. G., FEIG Y. S. The use of DAPI for ident ifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943, 1980.
  • 22. MARKER A. F. H., CROWTHER C. A, GUNN R. J. M. Methanol and acetone as solvents for estimating chlorophyll and phaeopigments by spectrophotometry. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14, 52, 1980.
  • 23. HELSEL D.R, HIRSCH R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, pp 209-356, 1992
  • 24. CHAPMAN D. Water quality assessments. A guide to the use of biota, sediments, and water in environmental monitoring. Chapman & Hall, London, pp 324-328, 1992.
  • 25. MAGUE T. H., FRIBERG E., HUGHES D. J., MORRIS I. Extracellular release of carbon by marine phytoplankton, a physiological approach. Limnol. Oceanogr. 25, 262, 1980.
  • 26. DUURSMA E. K. The production of dissolved organic matter in the sea, as related to the primary gross production of organic matter. Neth. J. Sea Res. 2, 85, 1963.
  • 27. SHARP J. H. Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol. Oceanogr. 22, 381, 1977.
  • 28. BAINES S. B., PACE M. L. The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Lim nol. Oceanogr. 36(6), 1078, 1991.
  • 29. SIMON M., TILZER M. M. Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J. Plankton Res. 9, 535, 1987.
  • 30. SIUDA W., CHROST R. J, GUDE H. Distribution and origin of dissolved DNA in lakes of different trophic states. Aquat. Microb. Ecol. 15, 89, 1998.
  • 31. CHROST R. J., GAJEWSKI A. J. Microbial utilization of lipids in lake water. FEMS Microb. Ecol. 18, 45, 1995.
  • 32. GAJEWSKI A. J., CHROST R. J. Microbial enzyme activities and phytoplankton and bacterial production in the pelagial of the Great Mazurian lakes (north-eastern Poland) during summer stratification. Ekol. pol. 43, 245, 1995.
  • 33. CHROST R. J., WCISLO R., HAVEMEJKO G. Z. Enzymatic decomposition of organic matter by bacteria in an eutrophic lake. Arch. Hydrobiol. 107, 145, 1986.
  • 34. CHROST R. J., MUNSTER U., RAI H., ALBRECHT D, WITZEL P. K, OVERBECK J. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res. 11, 223, 1989.
  • 35. CHROST R. J. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. Microbial enzymes in aquatic environments. Springer-Verlag, New York, pp 29-60, 1991.
  • 36. CHROST R. J. Microbial ectoenzymes in aquatic environ ments. Aquatic microbial ecology: biochemical and molecular approaches. Springer-Verlag, New York, pp 47-78,1990.
  • 37. CHROST R. J. Algal-bacterial metabolic coupling in the carbon and phosphorus cycle in the lake. Perspectives in microbial ecology; Slovene Soc. Microbiol., Ljubljana, pp 360-366, 1986.
  • 38. WCISLO R., CHROST R. J. Selected enzymatic properties of bacterioplankton in lakes of various degrees of eutrophication. Acta Microbiol. Polon. 47, 203, 1997.
  • 39. WETZEL R.G. Extracellular enzymatic interactions: stor age, redistribution, and interspecific communication. Microbial Enzymes in Aquatic Environments; Springer-Verlag: New York, pp 6-28, 1991.
  • 40. BANO N., MORAN M. A., HODSON R. E. Bacterial utilization of dissolved humic substances from a freshwater swamp. Aquat. Microb. Ecol. 12, 233, 1997.
  • 41. MUNSTER U., CHROST R. J. Origin, composition, and microbial utilization of dissolved organic matter. Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York, pp 8-46, 1990.
  • 42. POMEROY L. R., SHELDON J. E., SHELDON JR W. M., PETERS F. Limits to growth and respiration of bacteriop lankton in the Gulf of Mexico. Mar. Ecol. Prog. Ser. 117, 259, 1995.
  • 43. COLE J. J., FINDLAY S., PACE M. L. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1, 1988.
  • 44. KIRCHMAN D.L. Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific. Mar. Ecol. Prog. Ser. 62, 47, 1990.
  • 45. KUPERINEN J., HEINANEN A. Inorganic nutrient and carbon controlled bacterioplankton growth in the Baltic Sea needs Estuar Coast Shelf. Sci. 37, 271, 1993.
  • 46. SHIAH F. K., DUCKLOW H. W. Temperature and substrate regulation of bacterial abundance, production, and specific growth rate in temperate estuarine ecosystems. Mar. Ecol. Prog. Ser. 103, 297, 1994.
  • 47. SCHWEITZER B., SIMON M. Growth limitation of plank­tonic bacteria in a large mesotrophic lake. Microb. Ecol. 30, 89, 1995.
  • 48. COLE J. J. Interactions between bacteria and algae in aqua tic ecosystems. Annu. Rev. Ecol. Syst. 13, 291, 1982.
  • 49. BELL R. T., KUPARINEN J. Assessing phytoplankton and bacterioplankton production during early spring in Lake Er- ken, Sweden. Appl. Envir. Microbiol. 48, 122, 1984.
  • 50. JENSEN L. M., S0NDERGAARD M. Comparison of two methods to measure algal release of dissolved organic car­bon and the subsequent uptake by bacteria. J. Plankton Res. 7, 41, 1985.
  • 51. RIEMANN B., S0NDERGAARD M. regulations of bacter ial secondary production in two eutrophic lakes and in ex perimental enclosures. J. Plankton Res. 8, 519, 1986.
  • 52. FUHRMAN J., AMMERMAN J. W., AZAM F. Bacteriop­lankton in the coastal eutrophic zone: distribution, activity, and possible relation with phytoplankton. Mar. Biol. 60, 201, 1980.
  • 53. LOVELL C. R., KONOPKA A. Primary and bacterial production in two dimictic Indiana lakes. Appl. Environ. Micro biol. 49, 485, 1985.
  • 54. JOHANSSON J. A. Seasonal development of bacterioplan­kton in two forest lakes in central Sweden. Hydrobiology 101,71,1983.
  • 55. SALONEN K., KOLONEN K., ARVOLA L. Respiration of plankton in two small, polyhumic lakes. Hydrobiology 101, 65, 1983.
  • 56. SARVALA J., ILMAVIRTA V., PAASIVIRTA L, SALONEN K. The ecosystem of the oligotrophic lake Paajarvi 3. Secondary production and an ecological energy budget of the lake. Verh. Int. Ver. Limnol. 21, 454, 1981.
  • 57. HESSEN D. O. Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hy­drobiologia 229, 115, 1992.
  • 58. TRANVIK L. J. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16, 311, 1988.
  • 59. SEDERHOLM H, MAURANEN A., MONTONEN L. Some observations on the microbial degradation on humus substances in water. Verh. Int. Ver. Limnol. 18, 1301, 1973.
  • 60. TRANVIK L. J., HOFLE M. G. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. Environ. Microbiol. 53, 482, 1987.
  • 61. TRANVIK L. J., SIEBURTH J. M. Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol. Oceanogr. 34, 688, 1989.
  • 62. VISSER S. A. Effects of humic acids on numbers and activities of microorganisms within physiological groups. Org. Geochem. 8, 81, 1985.
  • 63. DUCKLOW H. W., PURDIE D. A., WILLIAMS P. J. L., DAVIS J. M. Bacterioplankton: a sink for carbon in a coastal marine plankton community. Sci. 232, 865, 1986.
  • 64. DEL GIORGIO P. A., SCARBOROUGH G. Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: Implications on estimates of bacterial growth and production rates. J. Plankton. Res. 17, 1905, 1995.
  • 65. DEL GIORGIO P. A., GASOL J. M., VAQU D., MURA P., AGUSTI S., DUARTE C. M. Bacterioplankton community structure: Protists control net production and the pro portion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41, 1169, 1996.
  • 66. WIKNER J., RASSOULZADEGAN F., HAGSTROM A. Periodic bacterivore activity balances bacterial growth in the marine environment. Limnol. Oceanogr. 35, 313, 1990.
  • 67. SANDERS R. W., CARON D. A., BERNINGER U. G. relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An iner-ecosystem com parison. Mar. Ecol. Prog. Ser. 86, 1, 1992.
  • 68. PACE M. L., COLE J. J. Regulation of bacteria by resources and predation tested in whole-lake experiments. Limnol. Oceanogr. 41, 1448, 1996.
  • 69. McMANUS G. B., FUHRMAN J. A. Control of marine bacterioplankton populations: Measurement and significance of grazing. Hydrobiologia 159, 51, 1988.
  • 70. SANDERS R. W., PORTER K. G, BENNETT S. J., De­BIASE A. E. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 34, 673, 1989.
  • 71. BLOEM J, ELLENBROEK F. M, BAR-GILISSEN M.-J. B., CAPPENBERG T. E. Protozoan grazing and bacterial production in stratified Lake Vetchen estimated with fluorescent labelled bacteria and by thymidine incorporation. Appl. Environ. Microbiol. 55, 1787, 1989.
  • 72. PACE M. L., McMANUS G. B., FINDLAY S. E. G. Plank tonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr. 35, 795, 1990.
  • 73. FUKAMI K., MEIER B., OVERBECK J. Vertical and temporal changes in bacterial production and its consumption by heterotrophic nannoflagellates in a north German eutrophic lake. Arch. Hydrobiol. 122, 129, 1991.
  • 74. PERNTHALER J., SATTLER B, SIMEK K., SCHWAR­ZENBACHER A., PSENNER R. Top-down effects on the size -biomass distribution of a freshwater bacterioplankton community. Aquat. Microb. Ecol. 10, 255, 1996.
  • 75. SHERR E. B., SHERR B. F. High rates of consumption of bacteria by pelagic ciliates. Nature 325, 710, 1987.
  • 76. SIMEK K., BOBKOVA J., MACEK M., NEDOMA J., PSENNER R. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40, 1077, 1995.
  • 77. STABELL T. Ciliate bacterivory in epilimnetic waters. Aquat. Microb. Ecol. 10, 265, 1996.
  • 78. MULLER H., SCONE A., PINTO-COELHO R. M., SCHWEIZER A., WEISSE T. Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21, 119, 1991.
  • 79. PACE M. L., ORCUTT J. D. JR. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zo­oplankton community. Limnol. Oceanogr. 26, 822, 1981.
  • 80. CHRISTOFFERSEN K., RIEMANN B., HANSEN L. R., KLYSNER A., S0RENSEN H. B. Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria. Microb. Ecol. 20, 253, 1990.
  • 81. BEAVER J. R., CRISMAN T. L. Analysis of the community structure of planktonic ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia 174, 177, 1989.
  • 82. ANDERSSON A., LARSSON U., HAGSTROM 3. Size-se lective grazing by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 33, 51, 1986.
  • 83. GONZALES J. M., SHERR E. B., SHERR B. F. Differential feeding by marine flagellates on growing versus starving and on motile versus nonmotile, bacterial prey. Mar. Ecol. Prog. Ser. 102, 257, 1993.
  • 84. SHERR B. F., SHERR E. B., McDANIEL J. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl. Environ. Microbiol. 58, 2381, 1992.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b1ac5fc2-7449-478e-9b0a-1658a9655d03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.