PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 13 | 4 |

Tytuł artykułu

On the possible methods for the mathematical description of the ball and chain model of ion channel inactivation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ion channels are large transmembrane proteins that are able to conduct small inorganic ions. They are characterized by high selectivity and the ability to gate, i.e. to modify their conductance in response to different stimuli. One of the types of gating follows the ball and chain model, according to which a part of the channel’s protein forms a ball connected with the intracellular side of the channel by a polypeptide chain. The ball is able to modify the conductance of the channel by properly binding to and plugging the channel pore. In this study, the polypeptide ball is treated as a Brownian particle, the movements of which are limited by the length of the chain. The probability density of the ball’s position is resolved by different diffusional operators — parabolic (including the case with drift), hyperbolic, and fractional. We show how those different approaches shed light on different aspects of the movement. We also comment on some features of the survival probabilities (which are ready to be compared with electrophysiological measurements) for issues based on the above operators.

Wydawca

-

Rocznik

Tom

13

Numer

4

Opis fizyczny

p.535-552,fig.,ref.

Twórcy

autor
  • Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
autor

Bibliografia

  • 1. Ion Channels of Excitable Membranes (Hille, B.) 2nd edition Sinauer Associates INC., 1991.
  • 2. Catterall, W.A. and Gutman, G. Introduction to the IUPHAR compendium of voltage-gated ion channels 2005. Pharmacol. Rev. 57 (2005) 385.
  • 3. Mattis, J.H., Onkal, R., Fraser, S.P., Diss, J.K.J. and Djamgoz, M.B.A. Splice variants of human Nav1.5 voltage-gated Na+ channel: an electrophysiological comparison. Proc. Physiol. Soc. 3 (2006) PC32.
  • 4. Grzywna, Z.J., Siwy, Z., Fuliński, A., Mellor, I. and Usherwood, P.N.R. Chaos in the potassium current through channels of locust muscle membrane. Cell. Mol. Biol. Lett. 4 (1999) 37-54.
  • 5. Liebovitch, L.S., Selector, L.Y. and Kline, R.P. Statistical properties predicted by the ball and chain model of channel inactivation. Biophys. J. 63 (1992) 1579-1585.
  • 6. Małysiak, K., Borys, P. and Grzywna, Z.J. On the ball and chain model by simple and hyperbolic diffusion – an analytical approach. Acta Phys. Pol. B 38 (2007) 1865-1879.
  • 7. Shrivastava, I.H., Durell, S.R. and Guy, H.R. A model of voltage gating developed using the KvAP channel crystal structure. Biophys. J. 87 (2004) 2255-2270.
  • 8. MacKinnon, R. Using mutagenesis to study potassium channel mechanisms. J. Bioenerg. Biomembr. 23 (1991) 647-663.
  • 9. Armstrong, C.M., Bezanilla, F. and Rojas, E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62 (1973) 375-391.
  • 10. Armstrong, C.M. and Bezanilla, F. Inactivation of the sodium channel. J. Gen. Physiol. 70 (1977) 567-590.
  • 11. Hoshi, T., Zagotta, W.N. and Aldrich, R.W. Biophysical and molecular mechanisms of shaker potassium channel inactivation. Science 250 (1990) 533-538.
  • 12. Zagotta, W.N., Hoshi, T. and Aldrich, R.W. Restoration of inactivation in mutants of shaker channels by a peptide derived from ShB. Science 250 (1990) 586-571.
  • 13. Antz, C. and Fakler, B. Fast inactivation of voltage gated K+ channels: from cartoon to structure. New Physiol. Sci. 13 (1998) 177-182.
  • 14. Jones, S.W. Are rate constants constant? J. Physiol. 571 (2006) 502-503.
  • 15. Ulbricht, W. Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85 (2005) 1271-1301.
  • 16. Timpe, L.C. and Peller, L. A random flight chain model for the tether of the shaker K+ channel inactivation domain. Biophys. J. 69 (1995) 2415-2518.
  • 17. Borys, P., Grzywna Z.J. and Liebovitch, L.S. Three dimensional ball and chain problem by the hyperbolic random walk. Acta Phys. Pol. B 38 (2007) 1705-1717.
  • 18. Single-Channel Recordings (Sakmann, B. and Neher, E.) 2nd edition, Springer 1995.
  • 19. Stolarczyk, J. and Grzywna, Z.J. Diffusion in glassy polymers from random walks to partial differential equations. Acta Phys. Pol. B 36 (2005) 1595-1611.
  • 20. Grzywna, Z.J., Małysiak, K. and Rubi, M. On the first passage time distributions for K channels of the cancer cells. European Biophysics Congress, London, 2007.
  • 21. Heat Conduction (Özişik, M.N.) John Wiley & Sons, 1980.
  • 22. Goldstein, S. On diffusion by discontinuous movements, and on the telegraph equation. Q. J. Mechanics Appl. Math. 4 (1951) 129-156.
  • 23. Partial Differential Equations of Applied Mathematics (Zauderer, E.) 2nd edition, Wiley-Intersci. Publ., 1998.
  • 24. Weiss, G. First passage times for correlated random walks and some generalizations. J. Stat. Phys. 37 (1984) 325-330.
  • 25. Patton, D.E., West, J.W., Catterall, W.A. and Goldin, A.L. Amino-acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc Natl. Acad. Sci. USA 89 (1992) 10905-10909.
  • 26. Murrel-Lagnado, R.D. and Aldrich, W.R. Interactions of amino terminal domains of shaker K+ channels with a pore blocking site studies with synthetic peptides. J. Gen. Physiol. 102 (1995) 949-975.
  • 27. Leonard, B.P. A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Comput. Meth. Appl. Mech. Eng. 19 (1979) 59-98.
  • 28. Weiss, M., Hashimoto, H. and Nilsson, T. Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys. J. 84 (2003) 4043-4052.
  • 29. Fulton, A.B. How crowded is the cytoplasm? Cell 30 (1982) 345-347.
  • 30. Wachsmuth, M., Waldeck, M. and Langowski J. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J. Mol. Biol. 298 (2000) 677-689.
  • 31. Weiss, M., Elsner, M., Kartberg F. and Nilsson, T. Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87 (2004) 3518-3524.
  • 32. Metzler, R. and Klafter, J. The random walk guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1-77.
  • 33. Metzler, R. and Klafter, J. Boundary value problems for fractional diffusion equations. Phys. A 278 (2000) 107-125.
  • 34. Zanette, D.H. Macroscopic currents in fractional anomalous diffusion. Phys. A 252 (1998) 159-164.
  • 35. Demo, S.D. and Yellen, G. The Inactivation gate of the shaker K+ channel behaves like an open-channel blocker. Neuron 7 (1991) 743-753.
  • 36. Liebovitch, L.S., Scheurle, D., Rusek, M. and Zochowski, M. Fractal methods to analyze ion channel kinetics. Meth. 24 (2001) 359-375.
  • 37. Doyle, D.A., Cabral, J.M., Pfuetzner, A.R., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T. and MacKinnon, R. The Structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280 (1998) 69-77.
  • 38. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419 (2002) 35-42.
  • 39. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. and MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414 (2001) 43-48.
  • 40. Zhou, M., Morais-Cabral, J.H., Mann, S. and MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411 (2001) 657-661.
  • 41. Jiang, Y., Ruta, V., Chen, J., Lee, A. and MacKinnon, R. The principles of gating charge movement in a voltage-dependent K+ channel. Nature 423 (2003) 42-48.
  • 42. Rohl, A.C., Boeckman, F.A., Baker, C., Scheuer, T., Caterall, W.A. and Klevit, R.E. Solution structure of the sodium channel inactivation gate. Biochem. 38 (1999) 855-861.
  • 43. Fuliński, A., Grzywna, Z., Mellor, I., Siwy, Z. and Usherwood, P.N.R. NonMarkovian character of ionic current fluctuations in membrane channels. Phys. Rev. E 58 (1998) 919-924.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b1988a65-8097-4087-bccf-b06504248574
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.