PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 46 |

Tytuł artykułu

Uptake and localization of cadmium by Biscutella laevigata, a cadmium hyperaccumulator

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Biscutella laevigata has recently been recognized as a species able to accumulate large amounts of cadmium. The experiments reported in this paper were conducted on two geographically isolated populations of B. laevigata in Poland. Both populations grow on metalliferous soils: a lead-zinc (calamine) waste heap in Bolesław near Olkusz (189 mg Cd/kg d.m.) and limestone rock in the West Tatra Mts (1.4-6.1 mg Cd/kg d.m.). The two populations were compared after cultivating them in medium containing cadmium salt (2-120 mg/dm3) for 3-30 days. Root-to-shoot transport of cadmium was higher in the waste-heap population than in the mountain population. In the waste-heap population, large amounts of cadmium were transported to the oldest leaves, reaching levels even twice those of the mountain population. This shows that the ability to hyperaccumulate metals may be a property of a population, not an entire species, and that the ability to accumulate cadmium in the oldest (withering) leaves may be a way the plant eliminates the toxic metal. Histochemical detection of cadmium (with dithizone) in tissues showed that it was taken up by the root hairs and then transported through vascular bundles to the leaves. The surface cells of the leaves, the epiderm and hairs accumulated particularly large amounts of cadmium. The leaves of the B. laevigata waste-heap population are much more thickly covered by hairs than those of the mountain population; we suggest that the ability to accumulate cadmium in leaf hairs may be a mechanism of detoxifying and hyperaccumulating cadmium in the shoots of that population.

Wydawca

-

Rocznik

Tom

46

Opis fizyczny

p.57-63,fig.,ref.

Twórcy

  • University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland

Bibliografia

  • Anderson CWN, and Brooks RR. 1999. Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration 67: 407-415.
  • Baker AJM, and Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1: 81-126.
  • Dobrzańska J. 1955. Flora and ecological studies on calamine flora in the district of Bolesław and Olkusz. Acta Societatis Botanicorum Poloniae 24: 357-417 (in Polish).
  • Ernst WHO, Verkleij JAC, and SchatH. 1992. Metal tolerance in plants. Acta Botanica Neerlandica 41: 229-248.
  • Godzik B. 1993. Heavy metals content in plants from zinc dumps and reference areas. Polish Botanical Studies 5:113-132. Grodzińska K, Korzeniak U, Szarek-Łukaszewska G, and Godzik B. 2000. Colonization of zinc mine spoils in southern Poland - preliminary studies on vegetation, seed rain and seed bank. Fragmenta Floristica et Geobotanica 45: 123- 145.
  • Hall JL. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1-11.
  • Kupper H, Lombi E, Zhao FJ, and McGrath SP. 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in hyperaccumulator Arabidopsis halleri. Planta, 212: 75-84.
  • Małkowski E, and Kurtyka R. 2003. Mechanisms of zinc and cadmium hyperaccumulation in plants. Advances in Cell Biology 30: 483-495.
  • Mesjasz-Przybyłowicz J, Grodzińska K, Przybyłowicz WJ, Godzik B, and Szarek- Łukaszewska. 2001. Nuclear microprobe studies of elemental distribution in seeds of Biscutella laevigata L. from zinc wastes in Olkusz, Poland. Nuclear Instruments and Methods in Physics Research B 181: 634-639.
  • Miechówka A. 2000. Charakterystyka tatrzańskich gleb nieleśnych wytworzonych ze skał węglanowych. Zeszyty Naukowe AR. Kraków.
  • Niemyska-Łukaszczuk J. 1993. Formy cynku, ołowiu i kadmu w glebach wybranych regionów Karpat Zachodnich. Habilitation thesis. Zeszyty Naukowe AR Kraków.
  • Rutkowski L. 1998. Klucz do oznaczania roślin naczyniowych Polski Niżowej. PWN, Warszawa.
  • Seregin IV, and Ivanov VB. 1997. Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology 14: 791-796.
  • Siedlecka A, Tukendorf, Skórzyńska-Polit E, Maksymiec W, Wójcik M, Baszyński T, and Krupa Z. 2001. Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and Poaceae; other than Brassicaceae). Metals in the Environment. Analysis by Biodiversity 7: 171-217.
  • Strebeyko P. 1976. An introduction to plant physiology. PWRiL, Warsaw (in Polish).
  • Szafer W. 1927. The vascular plants of Poland and neighbouring lands. Flora Polonica, vol. 3, Cracow (in Polish).
  • Szarek-Łukaszewska G, and Niklińska. 2002. Concentration of alkaline and heavy metals in Biscutella laevigata L. and Plantago lanceolata L. growing on calamine spoils (S. Poland). Acta Biologica Cracoviensia Series Botanica 44: 29-38.
  • Szarek-Łukaszewska G, Słysz A, and Wierzbicka M. 2004. Response of Armeria maritima (Mill.) Wild, to Cd, Zn and Pb. Acta Biologica Cracoviensia Series Botanica 46: 19-24.
  • Szmal ZS, and Lipiec T. 1996. Analytical chemistry and instrumental analysis elements. PZWL, Warsaw (in Polish).
  • Wenzel WW, and Jockwer F. 1998. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environmental Pollution 104: 145-155.
  • Wierzbicka M, and Pielichowska M. 2004. Adaptation of Biscutella laevigata L., a metal hyperaccumulator, to growth on a zinc-lead waste heap in southern Poland. I Differences between waste-heap and mountain populations. Chemosphere 54: 1663-1674.
  • Wierzbicka M, Szarek-Łukaszewska G, and Grodzińska K. 2004. Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety 59: 84-88.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-b037b4df-488c-402e-884a-60c4cd97b685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.