PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2002 | 61 | 1 |

Tytuł artykułu

The morphological types of neurones of the medial and lateral mamillary nuclei in a newborn guinea pig: Nissl, Kluver-Barrera and Golgi studies

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The studies were carried out on the hypothalamus of 5 newborn (P0 stage) guinea pigs. The sections were impregnated according to three modifications of the Golgi technique or stained according to the Nissl and Klüver-Barrera methods. On the basis of the shape and size of perikarya, dendroarchitecture, pattern of axon as well as the inner structure of neurones, in the medial (Mm) and lateral (Ml) mamillary nuclei four morphological types of nerve cells were distinguished: cap-like with two subtypes (33% of the cell population), fusiform (35%), triangular (12%) and rounded unidendritic (21%) neurones. The majority of them possessed spines on their dendrites. The spiny cells, both cap-like and fusiform ones, were observed preponderantly, in the medial mamillary nucleus, whereas in the lateral mamillary nucleus there were mainly seen the triangular and fusiform neurones, either spiny or aspiny cells. The spineless rounded unidendritic cells were dispersed throughout the mamillary region, but they were twice as numerous in Mm as in Ml, where they were the least numerous.

Wydawca

-

Czasopismo

Rocznik

Tom

61

Numer

1

Opis fizyczny

p.21-30,fig.,ref.

Twórcy

autor
  • University of Warmia and Mazury in Olsztyn, Zolnierska 14, 10-561 Olsztyn, Poland

Bibliografia

  • 1. Aas J-E, Brodal P (1988) Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: an experimental anatomical study in the Cat. J Comp Neurol, 268: 313–328.
  • 2. Airaksinen MS, Alanen S, Szabat E, Visser TJ, Panula P (1992) Multiple neurotransmitters in the tuberomammillary nucleus: comparison of rat, mouse and guinea pig. J Comp Neurol, 323: 103–116.
  • 3. Allen GV, Hopkins DA (1988) Mamillary body in the rat: a cytoarchitectonic, Golgi, and ultrastructural study. J Comp Neurol, 275: 39–64.
  • 4. Altman J, Bayer SA (1978) Development of the diencephalon in the rat. II. Correlation of the embryonic development of the Hypothalamus with the time of origin of its neurons. J Comp Neurol, 182: 973–994.
  • 5. Bae S-J, Lee HK, Lee J-H, Choi CG, Suh DC (2001) Wernicke’s encephalopathy: atypical manifestation at MR Imaging. Am J Neuroradiol, 22: 1480–1482.
  • 6. Belzunegui T, Insausti R, Ibanez J, Gonzalo LM (1995) Effect of chronic alcoholism on neuronal nuclear size and neuronal population in the mamillary body and the anterior thalamic complex of man. Histol Histopathol, 10: 633–638.
  • 7. Calingasan NY, Baker H, Sheu K-FR, Gibson GE (1994) distribution of the a-Ketoglutarate dehydrogenase complex in rat brain. J Comp Neurol, 346: 461–479.
  • 8. Cuello AC (1983) Nonclassical neuronal communications. Federation Proc, 42: 2912–2922.
  • 9. Demotes-Mainard J, Henry C, Jeantet Y, Arsaut J, Arnauld E (1996) Postnatal ontogeny of dopamine D3 receptors in the mouse brain: autoradiographic evidence for a transient cortical expression. Brain Res. Dev Brain Res 94:166–174.
  • 10. Dietrichs E, Haines DE (1989) Interconnections between hypothalamus and cerebellum. Anat Embryol, 179: 207–220.
  • 11. Dobbing J (1971) Undernutrition and the developing brain: the use of animal models to elucidate the human problem. In: Stoeliga GBA, van der Werff ten Bosch JJ (eds). Normal and abnormal development of brain and behaviour. Leiden University Press, pp.20–38.
  • 12. Felten DL, Sladek JR (1983) Monoamine distribution in primate brain V. Monoaminergic nuclei: anatomy, pathways and Local Organization. Brain Res Bull, 10: 171–284.
  • 13. Flood JF, Scherrer JF, Morley JE (1995) Localized injections of various compounds effecting neurotransmitter activity in the mamillary complex enhance (T-maze) avoidance retention. Eur J Pharmacol 275: 223–228.
  • 14. Gonzalo-Ruiz A, Alonso A, Sanz JM, Llinas RR (1992) Afferent projections to the mamillary complex of the rat, with special reference to those from surrounding hypothalamic regions. J Comp Neurol 321: 277–299.
  • 15. Gonzalo-Ruiz A, Alonso A, Sanz JM, Llinas RR (1992) A dopaminergic projection to the rat mamillary nuclei demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase and tyrosine hydroxylase immunohistochemistry. J Comp Neurol 321: 300–311.
  • 16. Gonzalo-Ruiz A, Sanz-Anquela JM, Spencer RF (1993) Immunohistochemical localization of GABA in the mamillary complex of the rat. Neuroscience 54: 143–156.
  • 17. Jacobson M (1978) Developmental neurobiology. (sec. ed.) Plenum Press, New York.
  • 18. Liu H, Mihhhailoff GA (1999) Hypothalamopontine projections in the rat: anterograde axonal transport studies utilizing light and electron microscopy. Anat Rec 255: 428–451.
  • 19. Llinas RR, Alonso A (1992) Electrophysiology of the mamillary complex in vitro. I. Tuberomamillary and lateral mamillary neurons. J Neuropshysiol, 68: 1307–1320.
  • 20. Loes DJ, Barloon TJ, Yuh WTC., DeLaPaz RL, Sato Y (1991) MR anatomy and pathology of the hypothalamus. Pictorial Essay. AJR 156: 579–585.
  • 21. Mattyse S, Williams R (1982) Quantitative analysis of neuronal form. In: Lieblich I (ed.). Genetics of the Brain. Elsevier Biomedical Press, Amsterdam, pp. 423–436.
  • 22. Millhouse OE (1979) A Golgi anatomy of the rodent hypothalamus. In: Morgane, Panksepp (eds). Handbook of the hypothalamus. Vol. 1. Anatomy of the hypothalamus. Marcel Deker, Inc., New York, Basel, pp. 221–267.
  • 23. Moryś J, Dziewiątkowski J, Świtka A, Sadowski M, Narkiewicz O (1994) Morphometric parameters of some hypothalamic nuclei: age-related changes. Folia Morphol (Warsz) 53: 221–229.
  • 24. Najimi M, Bennis M, Moyse E, Miachon S, Kopp N, Chigr F (2001) Regional distribution of benzodiazepine binding sites in the human newborn and infant hypothalamus. A quantitative autoradiographic study. Brain Res 895(1–2): 129–138.
  • 25. Olivierio A (1980) A genetic approach to the functional state of the brain in infancy and adulthood. In: Koukkou M, Lehmann D, Angst J (eds). Functional States of the Brain: Their Determinants. Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 23–38.
  • 26. Omenn GS (1982) Biochemical genetic approaches to human brain studies. In: Lieblich I (ed.). Genetics of the Brain. Elsevier Biomedical Press, Amsterdam, The Netherlands, pp. 439–479.
  • 27. Palkovits M, Záborszky L (1979) Neural connections of the hypothalamus. In: Morgane, Panksepp (eds). Handbook of the hypothalamus. Vol. 1. Anatomy of the hypothalamus. Marcel Deker, Inc., New York, Basel, pp. 379–487.
  • 28. Petrovicky P, Nemcova V (2000) Differences in the NADPH-diaphorase positivity of the cholinergic brain stem neurons following damage of their thalamic termination field. Sb Lek 101: 131–142.
  • 29. Pongrácz F, Martos J, Zsuppán F (1988) Nerve cells with irregular processes: Demonstration of anisotropic core geometry of a pyramidal cell. Neuroscience 25: 1077–1094.
  • 30. Ramón-Moliner E (1968) The Morphology of Dendrites. In: Bourne GH (ed.). The structure and function of nervous tissue. Vol. I. Academic Press. New York, San Francisco, London, pp. 205–264.
  • 31. Robak A (1996) Postnatal development of nuclei mamillare in guinea pig (Cavia porcellus L.). Folia Morphol (Warsz), 55: 425–427.
  • 32. Robak A (2000) The neuronal structure of the mamillary nuclei in guinea pig: Nissl, Klüver-Barrera and Golgi studies. Folia Morphol, 59: 105–110.
  • 33. Robak A, Szteyn S (2001) The neuronal structure of the mamillary region in postnatal stage (P20) of guinea pig. Acta Neurobiol Exp, 61: 199.
  • 34. Seki M., Zyo K (1984) Anterior thalamic afferents from the mamillary body and the limbic cortex in the rat. J Comp Neurol, 229: 242–256.
  • 35. Sikes RW, Vogt BA (1987) Afferent connections of anterior thalamus in rats: sources and association with muscarinic acetylcholine receptors. J Comp Neurol, 256: 538–551.
  • 36. Sziklas V, Petrides M (1993) Memory impairments following lesions to the mamillary region of the rat. Eur J Neurosci, 5: 525–540.
  • 37. Tredici G, Bianchi R, Gioia M (1983) Short intrinsic circuit in the periaqueductal gray matter of the cat. Neurosc Let, 39: 131–136.
  • 38. Wimer RE, Wimer CC (1982) A Geneticist’s Map of the mouse brain. In: Lieblich I (ed.). Genetics of the brain. Elsevier Biomedical Press, Amsterdam, pp. 395–420.
  • 39. Woźniak W (1999) Multipotent stem cells in the adult mammalian central nervous system. Folia Morphol (Warsz), 58: 57–63.
  • 40. Valverde F, Garcia C, Lopez-Mascaraque L, De Carlos JA (2000) Development of the mamillothalamic tract in normal and Pax-6 mutant mice. J Comp Neurol, 419: 485–504.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-aecb8a5e-160c-4c97-85c6-2c0e072f4b49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.