PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 50 | 1 |

Tytuł artykułu

Precursory siphuncular membranes in the body chamber of Phyllopachyceras and comparisons with other ammonoids

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Organic membranes preserved in the rear part of the body chamber of the Late Cretaceous phylloceratid ammonite Phyllopachyceras ezoense were examined with scanning electron microscopy (SEM) on the basis of well−preserved specimens from Hokkaido, Japan. SEM observations revealed that the membranes are continuous with the siphuncular tube wall in the phragmocone and consist of two layers, both of which are made of a dark, primarily conchiolin material; namely, a thinner inner homogeneous layer and a thicker outer layer with gently inclined pillar−like units. Hence, they are interpreted as the precursory siphuncular membranes. The precursory siphuncular membranes are not associated with any other organic components such as the siphuncular sheets reported in some Paleozoic and Mesozoic ammonoids. Unlike the tube−like condition in the phragmocone, the precursory siphuncular membranes in the body chamber of the specimens examined do not form a tube shape; on the ventral side the membranes are truncated and directly contact the outer shell wall. These observations suggest that the inner and outer layers of the precursory siphuncular membranes in the body chamber were respectively formed by the siphuncular epithelium from the inner side and by the invaginated septal epithelium from the outer side. It is also postulated that at the initial stage of septal formation, the rear part of the body moved slowly forward, developing a circumsiphonal invagination of the septal epithelium. Because similar conchiolin membranes are occasionally preserved in the body chambers of other phylloceratids, the above morphogenetic process applies to all members of the Phylloceratina. The tube−shaped structure in the rear part of the body chamber of desmoceratid Damesites consists only of nacreous layer. We interpret it as a pathologically overgrown prochoanitic septal neck.

Wydawca

-

Rocznik

Tom

50

Numer

1

Opis fizyczny

p.9-18,fig.,ref.

Twórcy

autor
  • University of Tokyo, Tokyo 113-0033, Japan
autor
autor

Bibliografia

  • Bandel, K. 1981. The structure and formation of the siphuncular tube of Quenstedtoceras compared with that of Nautilus (Cephalopoda). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 161: 153–171.
  • Bandel, K. and Boletzky, S.v. 1979. A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. The Veliger 21: 313–354.
  • Bayer, U. 1975. Organische Tapeten im Ammoniten−Phragmokon und ihr Einfluss auf die Fossilization. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1975 (1): 12–25.
  • Branco, W. 1879–1880. Beiträge zur Entwickelungsgeschichte der fossilen Cephalopoden.Palaeontographica 26 (1879): 15–50; 27 (1880): 17–81.
  • Checa, A. 1996. Origin of intracameral sheets in ammonoids. Lethaia 29: 61–75.
  • Denton, E.J. and Gilpin−Brown, J.B. 1966. On the buoyancy of the pearly Nautilus. Journal of Marine Biological Association of the United Kingdom 46: 723–759.
  • Denton, E.J. and Gilpin−Brown, J.B. 1973. Floatation mechanisms in modern and fossil cephalopods. In: F.S. Russel and M. Young (eds.) Advances in Marine Biology, Volume 11, 197–268. Academic Press, London.
  • Doguzhaeva, L.1988. Siphuncular tube and septal necks in ammonoid evolution. In: J. Wiedmann and J. Kulmann (eds.), Cephalopods Present and Past, 291–301. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.
  • Doguzhaeva, L.A. and Mikhailova, I.A. 1982. Siphuncular tube of Cretaceous heteromorphs [in Russian]. Doklady Akademii Nauk SSSR 264: 965–968.
  • Doguzhaeva, L.A. and Mutvei, H. 1986. Retro− and prochoanitic septal necks in ammonoids, and transition between them. Palaeontographica, Abteilung A 195: 1–18.
  • Druschits, V.V. and Doguzhaeva, L.A. 1974. Some morphogenetic characteristics of phylloceratids and lytoceratids (Ammonoidea) [in Russian]. Paleontologičeskij žurnal 1974 (1): 42–53.
  • Erben, H.K. and Reid, R.E.H. 1971. Ultrastructure of shell, origin of conellae and siphuncular membranes in an ammonite.Biomineralisation 3: 22–31.
  • Forbes, E. 1846. Report on the fossil Invertebrata from southern India, collected by Mr. Kaye and Mr. Cunliffe. Transactions of the Geological Society of London ser. 2, 7: 97–174.
  • Fukuda, Y., Tanabe, K. and Obata, I. 1981. Histology of the siphuncular epithelium in Nautilus pompilius (Cephalopoda) and its functional implications [in Japanese with English abstract]. Kaseki−Kenkyukai shi (Fossil Research Bulletin) 14: 29–40.
  • Grandjean, F. 1910. Le siphon des ammonites et des belemnites. Bulletin de la Societé Géologique de France 10: 496–519.
  • Greenwald, L., Ward, P.D., and Greenwald, O.E. 1980. Cameral liquid transport and buoyancy control in chambered nautilus (Nautilus macromphalus). Nature 286: 55–56.
  • Grégoire, C. 1984. Remains of organic components in the siphonal tube and in the brown membrane of ammonoids and fossil nautiloids. Hydrothermal simulation of their diagenetic alterations. Akademie der Wissenschaft und Literatur, Abhandlungen der Mathematisch−Naturwissenschaftlichen Klasse Jahrgang 1984 (5): 1–56.
  • Henderson, R.A. 1984. A muscle attachment proposal for septal function in Mesozoic ammonites. Palaeontology 27: 461–486.
  • Hölder, H. 1952. Über Gehäusebau, insbesondere Hohlkiel jurassischer Ammoniten. Palaeontographica, Abteilung A 102: 18–48.
  • Hölder, H. 1954. Über die Siphoanheftung bei Ammoniten.Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1954 (8): 372–379.
  • Kulicki, C. 1979. The ammonite shell: Its structure, development and biological significance. Acta Palaeontologica Polonica 39: 97–142.
  • Kulicki, C. 1994. Septal neck−siphuncular complex in Stolleyites (Ammonoidea), Triassic, Svalbard. Polish Polar Research 15: 37–49.
  • Kulicki, C. and Mutvei, H. 1982. Ultrastructure of the siphonal tube in Quenstedtoceras (Ammonitina). Stockholm Contributions in Geology 37: 129–138.
  • Lominadzé, T.A., Sharikadzé, M.Z., and Kvantaliani, I.V. 1993. On mechanism of soft body movement within body chamber in ammonites. Geobios Mémoire Spécial 15: 267–273.
  • Mapes, R.H., Landman, N.H., Tanabe, K. and Maeda, H. 2002. Intracameral membranes in Permian ammonoids from the Buck Mountain, Nevada Lagerstätte. Geological Society of America, Abstracts with Programs 34 (6): 354.
  • Mutvei, H. 1967. On the microscopic shell structure in some Jurassic ammonoids. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 129: 157–166.
  • Mutvei, H. and Reyment, R.A. 1973. Buoyancy control and siphuncle function in ammonoids. Palaeontology 16: 623–636.
  • Obata, I., Tanabe, K., and Fukuda, Y. 1980. The ammonite siphuncular wall: Its microstructure and functional significance. Bulletin of the National Science Museum (Tokyo), Series C (Geology and Paleontology) 6: 59–72.
  • Schoulga−Nesterenko, M. 1926. Nouvelles données sur l’organisation intérieure des conques des ammonites de l'étage d'Artinsk. Bulletin de la Societé des Naturalistes de Moscou, Section Géologique 2 (34): 81–99.
  • Tanabe, K. and Landman, N.H. 1996. Septal neck−siphuncular complex. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology, Volume 13 of Topics in Geobiology, 129–165. Plenum Press, New York.
  • Tanabe, K., Landman, N.H., and Weitschat, W. 1993. Septal necks in Mesozoic Ammonoidea: structure, ontogenetic development and evolution. In: M.R. House (ed.), The Ammonoidea: Environment, Ecology, and Evolutionary Change. Systematics Association Special Volume 47, 57–84. Clarendon Press, Oxford.
  • Tanabe, K., Obata, I., Fukuda, Y., and Futakami, M. 1979. Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy. Bulletin of the National Science Museum (Tokyo), Series C (Geology and Paleontology) 5: 153–176.
  • Tanabe, K., Fukuda, Y., and Obata, I. 1982. Formation and function of the siphuncle−septal neck structures in two Mesozoic ammonites. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 128: 433–443.
  • Tanabe, K., Fukuda, Y., and Obata, I. 1985. New chamber formation in the cuttlefish Sepia esculenta Hoyle. Venus 44: 55–67.
  • Tanabe, K., Mapes, R.H., Sasaki, T., and Landman, N.H. 2000. Soft−part anatomy of the siphuncle in Permian prolecanitid ammonoids. Lethaia 33: 83–91.
  • Weitschat, W. 1986. Phosphatisierte Ammonoideen aus der Mitteleren Trias von Central−Spitzbergen. Mitteilungen aus dem Geologisch−Paläontologischen Institut der Universität Hamburg 61: 249–279.
  • Weitschat, W. and Bandel, K. 1991. Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontologische Zeitschrift 65: 269–303.
  • Westermann, G.E.G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonites. Life Sciences Contributions, Royal Ontario Museum 78: 1–39.
  • Westermann, G.E.G. 1982. The connecting rings of Nautilus and Mesozoic ammonoids: implications for ammonoid bathymetry. Lethaia 15: 373–384.
  • Yokoyama, M. 1890. Versteinerung aus der japanischen Kreide. Palaeontographica 36: 159–202.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ae1d585d-320e-49b0-93f5-a8c6540c9502
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.