PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 57 | 4 |

Tytuł artykułu

Cell surface hydrophobicity of Bacillus spp. as a function of nutrient supply and lipopeptides biosynthesis and its role in adhesion

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cell surface hydrophobicity (CSH) is recognised as a important factor in microbial adhesion to solid surfaces. Growth conditions have been found to determine the synthesis of extracellular molecules by microorganisms. It has major consequences in modification of bacterial surface properties and consequently, in bacterial adhesion to solid surfaces. In this paper, CSH properties of Bacillus spp. depending on the nutrient supply and lipopeptide biosynthesis and its role in bacterial adhesion to solid surfaces were investigated. The obtained results indicate that the examined factors (nitrogen and carbon availability) influence the CSH of Bacillus spp. cells. In most variants of the experiments the role of nutrient supply in adhesion process was characteristic for species. The strongest effect was observed for peptone concentration (P<0.001). A decrease of CSH was noticed in optimal nitrogen availability (10 g/l) and it was connected with maximum yield of surfactin biosynthesis. The highest values of CSH of examined Bacillus spp. strains were observed under nitrogen starvation and in excess of carbon source. In these conditions the adhesion to stainless steel surface was more extensive.

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.313-319,fig.,ref.

Twórcy

autor
  • Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
autor
autor

Bibliografia

  • Ahimou F., P. Jacques and M. Deleu. 2000. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobity. Enzym. Microb. Technol. 27: 749-754.
  • Ahimou F., M. Paquot, P. Jacques, P. Thonart and P.G. Rouxhet. 2001. Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis. J. Microbiol. Meth. 45: 119-126.
  • Azeredo J., J. Visser and R. Oliviera. 1999. Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO. Coll. Surf. 14: 141-148.
  • Busalmen J.P. and S.R. dc Sanchez. 2001. Adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and polarized thin films of gold. Appl. Environ. Microbiol. 67: 3188-3194.
  • Cibis E., M. Krzywonos, K. Trojanowska, T. Miśiewicz and A. Ryzan. 2004. Biodegradation of potato slops with a mixed population of bacteria of the genus Bacillus - determination of the process conditions. Electr. J. Pol. Agr. Univ. Ser. Food Sci. Technol. 7: 1-5.
  • Claus D. and R.C.W. Berkeley. 1986. Endospore-forming Gram-positive rods and cocci: Bacillus, pp. 1105-1138. In: P.H.A. Sneath, N.S. Mair, M.E. Shape and J.G. Holt (eds), Bergey's Manual of Systematic Bacteriology. Vol. 2., 2nd ed., Williams and Wilkins Co., Baltimore.
  • Cunningham A.B., R.R. Sharp, F. Caccavo Jr and R. Gerlach. 2007. Effects of starvation on bacterial transport through porous media. Adv. Wat. Resour. 30: 1583-1592.
  • Doyle R.J. 2000. Contribution of the hydrophobic effect to microbial infection. Microb. Infect. 2: 391-400.
  • Faille C, C. Jullien, F. Fontaine, M.N. Bellon-Fontaine, C. Slomianny and T. Benezech. 2002. Adhesion of Bacillus spores and Escherichia coli cells to inert surface: role of surface hydrophobicity. Can. J. Microbiol. 48: 728-738.
  • Flint S.H., J.D. Brooks and P.J. Bremer. 1997. The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel. J. Appl. Microbiol. 83: 508-511.
  • Jacobs A., F. Lafolie, J.M. Herry and M. Debroux. 2007. Kinetic adhesion of bacterial cells to sand: Cell surface properties and adhesion rate. Colloids Surf, B: Biointerf. 59: 35-45.
  • Jefferson K.K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236: 163-173.
  • Jones D.S., J.G. McGovern, A.D. Woolfson and S.P. Gorman. 1997. Role of physiological conditions in the oropharynx on the adherence of respiratory bacterial isolates to endotracheal tube poly(vinyl chloride). Biomaterials. 18: 503-510.
  • Jordan F., P. Guicherd, V. Urbain and J.C. Manem. 1994. Hydrophobicity of activated sludge floes and laboratory growth bacteria. Wat. Sci. Technol. 30: 211-218.
  • Jullien C, T. Bénézech, B. Carpentier, V. Lebret and C. Faille. 2003. Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J. Food. Eng. 56: 77-87.
  • Le Thi T.T., C. Prigent-Combaret, C. Dorel and P. Lejeune. 2001. First stages of biofilm formation: characterization and quantification of bacterial functions involved in colonization process. Meth. Enzymol. 336: 152-159.
  • Liu Y., S.F. Yang, Y. Li, H. Xu, L. Qin and J.H. Tay. 2004. The influence of cell and substratum surface hydrophobicities on microbial attachment. J. Biotechnol. 110: 251-256.
  • Logan N.A. and R.C. Berkeley. 1984. Identification of Bacillus strains using the API system.J. Gen. Microbiol. 130: 1871-1882.
  • Ly M.H., N.H. Vo, T.M. Lc, J.M. Belin and Y. Waché. 2006. Diversity of the surface properties of lactococci and consequences on adhesion to food components. Colloids Surf, B: Biointerf. 52: 149-153.
  • Maget-Dana R., L. Thimon, F. Peypoux and M. Ptak. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochemie 74: 1047-1051.
  • McNamara C.J., M.J. Lemke and L.G. Feff. 1997. Characterisation of hydrophobic stream bacteria based on adhesion to n-octane. Ohio J. Sci. 97: 59-61.
  • Mukherjee A.K. and K. Das. 2005. Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol. Ecol. 54: 479-489.
  • Mulligan C.N. 2005. Environmental applications for biosurfactants. Environ. Poll. 133: 183-198.
  • Nitschke M. and S.G.V.A.O. Costa. 2007. Biosurfactants in food industry. Trend. Food Sci. Technol. 18: 252-259.
  • Norde W. and J. Lyklema. 1989. Protein adsorption and bacterial adhesion to solid surfaces: A colloid-chemical approach. Coll. Surf. 38: 1-13.
  • Parkar S.G., S.H. Flint, J.S. Palmer and J.D. Brooks. 2001. Factors influencing attachment of thermophilic bacilli to stainless steel. J. Appl. Microbiol. 90: 901-908.
  • Peng J.S., W.C. Tsai and C.C. Chou. 2001. Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int. .J. Food Microbiol. 65:105-111.
  • Planchon S., B. Gaillard-Martinie, S. Leroy, M.N. Bellon-Fontaine, S. Fadda and R. Talon. 2007. Surface properties and behaviour on abiotic surfaces of Staphylococcus carnosus, a genetically homogeneous species. Food Microbiol. 24: 44-51.
  • Razafindralambo H., Y. Popineau, M. Deleu, C. Hibid, P. Jacques, P. Thonart and M. Paquot. 1998. Foaming properties of lipopeptides produced by Bacillus subtilis: effect of lipid and peptide structural attributes. J. Agric. Food Chem. 46: 911-916.
  • Ron E.Z. and E. Rosenberg. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3: 229-236.
  • Sanin S.L., F.D. Sanin and J.D. Bryers. 2003. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Proc. Biochem. 38: 909-914.
  • Sutherland I.W. 2001a. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3-9.
  • Sutherland I.W. 2001b. The biofilm matrix - an immobilized but dynamic microbial environment. Trends Microbiol. 9: 222-227.
  • Uberos J., C. Augustin, J.Liébana. A. Molina and A. Muńoz-Hoyos. 2001. Comparative study of the influence of melatonin and vitamin E on the surface characteristics of E. coli. Lett. Appl. Microbiol. 32: 303-306.
  • Vadillo-Rodríguez V., H.J. Bussher, H.C. van der Mei, J. de Vries and W. Norde. 2005. Role of Lactobacillus cell surface hydrophobisity as probed by AFM in adhesion to surfaces at low and high ionic strange. Colloids Surf, B: Biointerf. 41: 33-41.
  • Valcarce M.B., J.P. Busalmen and S.R. de Sánchez. 2002. The influence of the surface condition on the adhesion of Pseudomonas fluorescens (ATCC 17552) to copper and aluminium brass. Int. Biodeterior. Biodegrad. 50: 61-66.
  • Wei Y.H. and I.M. Chu. 1998. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzym. Mcrob. Technol. 22: 724-728.
  • Wiliams O.B. 1936. Tryptone medium for the detection of flat sour spores. Food Res. 3: 217-221.
  • Youssef N.H., K.E. Duncan, D.P. Nagle, K.N. Savage, R.M. Knapp and M.J. McInerney. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Meth. 56: 339-347.
  • Zikmanis P., L. Shakirova, L. Auzina and I. Andersone. 2007. Hydrophobicity of bacteria Zymomonas mobilis under varied environmental conditions. Proc. Biochem. 42: 745-750.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ad2cb8fd-86c4-47d6-afde-9697819ca258
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.