PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 54 | 1 |

Tytuł artykułu

The effect of ethambutol on mycobacterial cell wall permeability to hydrophobic compounds

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ethambutol (EMB), the first line drug in the treatment of tuberculosis, is an inhibitor of the biosynthesis of the cell wall compound - arabinogalactan. It was found that EMB at sub-inhibitory concentration increases the permeability of the M. vaccae cell wall, which was monitored by cell sensitization to erythromycin and rifampicin. The high permeability of the cell wall to hydrophobic compounds allows enhanced intracellular bioconversion of (β -sitosterol to 4-androsten-3,17-dione (AD) and l,4-androstadien-3,17-dione (ADD).

Wydawca

-

Rocznik

Tom

54

Numer

1

Opis fizyczny

p.5-11,fig.,ref.

Twórcy

  • Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
autor

Bibliografia

  • Barry CE. 2001. Interpreting cell wall "virulence factors" of Mycobacterium tuberculosis. Trends Microbiol. 9: 237-241.
  • Belanger A.E., G.S. Besra, M.E. Ford, K. Mikusova, J.T. Belisle, P.J. Brennan and J.M. Inamine. 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93: 11919-11924.
  • Brennan P.J. 2003. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 83: 91-97.
  • Brennan P.J. and P. Draper. 1994. Ultrastructure of Mycobacterium tuberculosis, pp. 271-284. In: B. Bloom (ed.), Tuberculosis: pathogenesis, protection and control. AM. Soc. Microbiol, Washington, DC.
  • Brennan P.J. and H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64: 29-63.
  • Chatterjee D. 1997. The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr. Opinion Chem. Biol. 1. 579-588.
  • Colston M.J. 1996. The molecular basis of mycobacterial infection. Molec. Aspects Med. 17: 385-454.
  • Crick D.C., S. Mahapatra and P.J. Brennan. 2001. Biosynthesis of arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiol. 11: 107-118.
  • Daffe M., P.J. Brennan and M. McNeil. 1990. Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by ¹H and ¹³C-NMR analyses. J. Biol. Chem. 256: 6734-6743.
  • Daffe M. and P. Draper. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39: 131-203.
  • Deng L., K. Mikusova, K.G. Robuck, M. Scherman, P.J. Brennan and M.R. McNeil. 1995. Recognition of multiple effects of ehtambutol on metabolism of mycobacterial cell envelope. Antimicrob. Agents Chemother. 39: 694-701.
  • Dover L.G., A.M. Cerdeno-Tarraga, M.J. Pallen, J. Parkhill and G.S. Besra. 2004. Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol. Rev. 28: 225-250.
  • Dubnau E., J. Chan, C. Raynaud, VP. Mohan, M.A. Laneelle, K. Yu, A. Quernard, I. Smith and M. Daffe. 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36: 630-637.
  • Han J., R.R. Gadikota, PR. McCarren and T.L. Lowary. 2003. Synthesis of octyl arabinofuranosides as substrates for mycobacterial arabinosyltransferases. Carboh. Res. 338: 581-588.
  • Häusler H., R.P Kawakami, E. Mlaker, W.B. Severn and A.E. Stiitz. 2001. Ethambutol analogues as potential antimycobacterial agents. Bioorg. Med. Chem. Lett. 11: 1679-1681.
  • Hesselink P. 1988. Sterol side chain cleavage by Mycobacterium. Characterization, optimization and genetics. Ph.D. thesis. University of Groningen.
  • Kaur D. and G.K. Khuller. 2001. In vitro, ex-vivo and in vivo activities of ethambutol and sparfloxacin alone and in combination against mycobacteria. Internation. J. Antimicrob. Agents. 17: 51-55.
  • Kordulakova J., M. Gilleron, G. Puzo, P.J. Brennan, B. Gicquel, K. Mikusova and M. Jackson. 2003. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of mycobac-terium species. J. Biol. Chem. 278: 36285-36295.
  • Korycka-Machala M., A. Ziółkowski, A. Rumijowska-Galewicz, K. Lisowska and L. Sedlaczek. 2001. Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds. Microbiology 147: 2769-2781.
  • Lisowska K., M. Korycka, O. Hadław-Klimaszewska, A. Ziółkowski and L. Sedlaczek. 1996. Permeability of mycobacterial cell envelopes to sterols: Peptidoglycan as the diffusion barrier. J. Basic Microbiol. 36: 407-419.
  • Liu L, C.E. Barry, G.S. Besra and H. Nikaido. 1996. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem. 271: 29545-29551.
  • Liu J., E.Y. Rosenberg and H. Nikaido. 1995. Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc. Natl. Acad. Sci. USA 92: 11254-11258.
  • McNeil M. 1999. Arabinogalactan in mycobacteria: structure, biosynthesis and genetics, pp. 207-223. In: J.B. Goldberg (ed.), Genetics of Bacterial Polysaccharides. CRC Press, Washington, DC.
  • Mdluli K., J. Swanson, E. Fischer, R.E. Lee and C.E. Barry III. 1998. Mechanisms involved in the intrinsic isoniazid resistance of Mycobacterium avium. Mol Microbiol. 27: 1223-1233.
  • Mikusova K., R.A. Slayden, G.S. Besra and P.J. Brennan. 1995. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39: 2484-2489.
  • Mikusova K., T. Yagi, R. Stern, M.R. McNeil, G.S. Besra, D.C. Crick and P.J. Brennan. 2000. Biosynthesis of the galactan component of the mycobacterial cell wall. J. Biol. Chem. 275: 33890-33897.
  • Minnikin D.E. 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, pp. 95-184. In: C. Ratledge and J. Stanford (eds), The Biology of the Mycobacteria. London, Academic Press.
  • Nikaido H. 1994. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 264: 382-388.
  • Nikaido H., S.-H. Kim and E.Y. Rosenberg. 1993. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol. Microbiol. 8: 1025-1030.
  • Pathak A.K., V. Pathak, J.M. Riordan, S.S. Gurcha, G.S. Besra and R.C. Reynolds. 2004. Synthesis of mannopyranose disaccharides as phatoaffinity probes for mannosyltransferases in Mycobacterium tuberculosis. Carboh. Res. 339: 683-691.
  • Puech V., N. Bayan, K. Salim, G. Leblan and M. Daffe. 2000. Characterization of the in vivo acceptors of mycoloyl residues transferred by the corynebacterial PSI and the related mycobacterial antigen 85. Mol. Microbiol. 35: 1026-1041.
  • Ramaswamy S. and J.M. Musser. 1998. Molecular genetic basic of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuberc. Lung Dis. 79: 3-29.
  • Rastogi N., K.S. Goh and H.L. David. 1990. Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob. Agents Chemother. 34: 759-764.
  • Rastogi N., K.S. Goh, L. Horgenand W.W. Barrow. 1998. Synergistic activities of antituberculous drugs with cerulenin and tram-cinnamic acid against Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 21: 149-157.
  • Rumijowska A., K. Lisowska, A. Ziółkowski and L. Sedlaczek. 1997. Transformation of sterols by Mycobacterium vaccae: effect of lecithin on the permeability of cell envelopes to sterols. World J. Microbiol. Biotechnol. 13: 89-95.
  • Rumijowska-Galewicz A., A. Ziółkowski, M. Korycka-Machala and L. Sedlaczek. 2000. Alterations in lipid composition of Mycobacterium vaccae cell wall outer layer enhance P-sitosterol degradation. World J. Biol. Biotechnol .16: 237-244.
  • Schiavano G.F., A.G. Celeste, L. Salvaggio, M. Sisti and G. Brandi. 2001. Efficacy of macrolides used in combination with ethambutol, with or without other drugs, against Mycobacterium avium within human macrophages. Intonation. J. Antimicrob. Agents. 18: 525-530.
  • Sedlaczek L. 1988. Biotransformations of steroids. Crit. Revs. Biotechnol. 7: 187-236.
  • Sedlaczek L., B.M. Górmiński and K.Lisowska. 1994. Effect of inhibitors of cell envelope synthesis on P-sitosterol side chain degradation by Mycobacterium sp NRRL 3683. J. Basic Microbiol. 34: 387-399.
  • Sedlaczek L., K. Lisowska, M. Korycka, A. Rumijowska, A. Ziółkowski and J. Długoński. 1999.The effect of cell wall components on glycine-enhanced sterol side chain degradation to androstene derivatives by mycobacteria. Appl. Microbiol. Biotechnol. 52: 563-571.
  • Seidel L. and C. Horhold. 1992. Selection and characterization of new microorganisms for the manufacture of 9-OH-AD from sterols. J. Basic Microbiol. 32: 49-55.
  • Szentirmai A. 1990. Microbial physiology of side chain degradation of sterols. J. Ind. Microbiol. 6: 101-115.
  • Takayama K. and J.O. Kilburn. 1989. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 33: 1493-1499.
  • Vaara M. 1992. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56: 395-411.
  • Wolucka B.A., M.R. McNeil, E. de Hoffman, T. Chojnacki and P.J. Brennan. 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan bisynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 269: 23328-23335.
  • Yuan Y, Y. Zhu, D.D. Crane and C.E. Barry III. 1998. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol. Microbiol. 29: 1449-1458.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-ac5fe536-7b7e-48e7-adae-99303557e433
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.