Unique spectroscopic properties of synthetic 15-cis beta-carotene, an important compound in photosynthesis, and a medicine for photoprotective function
The (11Bu+) energy of synthetic 15-cis β-carotene exhibits a linear dependence on (n2-1)/(n2+2) in non-polar and polar solvents; in this it is similar to (that of) all-trans β-carotene. The point of intersection is at (n2-1)/(n2+2) = 0.3 for both isomers. The microenvironment of 15-cis β-carotene in the Photosystem II reaction center was established as having a mean refractive index 1.473. Persistent spectral hole burning with a very broad (≈30 nm) hole observed around 500 nm (corresponding to an extremely short excited lifetime τ ≈9 fs) indicates that 15-cis β-carotene has/displays very efficient photoprotective quenching.
1.Koyama, Y. Structures and function of carotenoids in photosynthetic systems. Photochem. Photobiol. 9B (1991) 265-280.
2.Białek-Bylka, G., Tomo, T., Satoh, K. and Koyama, Y. 15-cis-β-carotene found in the reaction center of spinach PS II. FEES Lett. 363 (1995) 137-140.
3.Białek-Bylka, G., Hiyama, T., Yumoto, K. and Koyama, Y. 15-cis-β-carotene found in the RC of spinach PS I. Photosynth. Res. 49 (1996) 245-250.
4.Białek-Bylka, G.E., Fuji, R., Chen, Ch-H., Oh-oka, H., Kamiesu, A., Satoh, K., Koike, H. and Koyama, Y. 15-cis-carotenoids found in the reaction center of a green sulfur bacterium Chlorobium tepidum and the Photosystem I reaction center of a cyanobacterium Synechococcus vulcanus. Photosynth. Res. 58 (1998) 135-142.
5.Trebst, A. and Depka, B. Role of carotene in the rapid turnover and assembly of Photosystem II. FEBS Lett. 400 (1997) 359-362.
6.Koyama, Y. and Mukai, Y. Excited states of retinoids, carotenoids and chlorophylls as revealed by time-resolved electronic absorption and resonance Raman spectroscopy. Advan. Spectrosc. 21: Biomolecular Spectroscopy Part B, (Clark, R.J.H. and Hester, R.E. Eds.), Wiley, Chichester, 1993.
7.Krinsky, N.I. The protective function of carotenoid pigments. In: Photophysiology, vol. 3, (Giese, A.C. Ed.), Academic Press, New York. (1968) 123-195.
8.Krinsky, N.I. Carotenoid protection against photooxidation. Pure Appl. Chem. 52 (1979) 649-660.
9.Frank, H.A. and Cogdell, RJ. Carotenoids in photosynthesis. Photochem. Photobiol. 63 (1996) 257-264.
10.Białek-Bylka, G.E., Shkuropatov, A.Y., Kadoshnikov, S.I. and Frąckowiak, D. Excitation energy transfer between β-carotene and chlorophyll-a in various systems. Photosynth. Res. 3 (1982) 241-254.
11.Kuhlbrandt, W., Wang, D.N. and Fujiyoshi, Y. Atomic model of plant higher-harvesting complex by electron crystallography. Nature 367 (1994) 614-621.
12.Białek- Bylka, G.E., Sakano, Y., Mizoguczi, T., Shimamura, T., Philip, D., Koyama, Y. and Young, A.J. Central-cis isomers of lutein found in the major light-harvesting complex of Photosystem II (LHC IIb) of higher plants. Photosynth. Res. 56 (1998) 255-264.
13.Andersson, P.O., Gillbro, T., Ferguson, L. and Codgell, R.J. Absorption spectral shifts of carotenoids related to medium polarizability. Photochem. Photobiol. 54 (1991) 353-360.
14.Nagae, H., Kuki, M., Cogdell, R.J. and Koyama, Y. Shift of the 1Ag-→1Bu+ electronic absorption of carotenoids in non-polar and polar solvents. J. Chem. Phys. 101 (1994) 6750-6765.
15.Vacha, M., Adames, F., Ambroz, M., Baumruk, V., Dian, J., Nedbal, L. and Hala, J. Hole-burning spectroscopy of active and inactivated photosystem II particles. Photochem. Photobiol. 54 (1991) 127-132.
16.Dedic, R., Lovcinsky, M., Vacha, F. and Hala, J. Hole-burning study of exciton migration and pigment-protein interaction in photosynthetic systems. J. Luminescence 83-84 (1999) 357-360.
17.Tomo, T., Mimuro, M., Iwaki, M., Kobayashi, M., Itoh, S. and Satoh, K. Topology of pigments in the isolated Photosystem II reaction center studied by selective extraction. Biochim. Biophys. Acta 1321 (1997) 21-30.
18.Tsukida, K., Saiki, K., Takii, T. and Koyama, Y. Separation and determination of cis/trans-β-carotenes by HPLC. J. Chromatogr. 245 (1982) 359-364.
19.Pernak, J., Czepukowicz, A. and Pozniak, R. New ionic liquids and their antielectrostatic properties. Ind. Eng. Chem. Res. 40 (2001) 2379-2383.
20.Kuki, M., Nagae, H., Cogdell, R.J., Shimada, K. and Koyama, Y. Solvent effect on spheroidene in non-polar and polar solutions and the environment of spheroidene in the light-harvesting complexes of Rhodobacter sphaeroides 2.4.1 as revealed by the energy of the 1Ag-→1Bu+ absorption and the frequencies of the vibronically coupled C=C stretching Raman lines in the 1Ag- and 21Ag- states. Photochem. Photobiol. 59 (1994) 116-124.
21.Nagae, H. Theory of solvent effects on electronic absorption spectra of rodlike or disklike solute molecules: frequency shifts. J. Chem. Phys. 106 (1997) 5159-5170.
22.Von Doering, W.E., Sotiriou-Leventis, Ch. and Roth, W.R. Thermal interconversions among 15-cis, 13-cis, and all-trans-β-carotene: Kinetics, Arrhenius parameters, thermochemistry, and potential relevance to anticarcinogenicity of all-trans-β-carotene. J. Am. Chem. Soc. 117 (1995) 2747-2757.
23.Bendich, A. Recent advances in clinical research involving carotenoids. Pure Appl. Chem. 66 (1994) 1017-1024.
24.Mathews-Roth, M.M. and Krinsky, N.I. Effect of dietary fat level on UV-B induced skin tumors, and anti-tumor action of β-carotene. Photochem. Photobiol. 40 (1984) 671-673.
25.Mathews-Roth, M.M. and Krinsky, N.I. Carotenoids affect development of UV-B induced skin cancer. Photochem. Photobiol. 46 (1987) 507-509.