PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 13 | 2 |

Tytuł artykułu

Accumulation of aquaporin-1 during hemolysin-induced necrotic cell death

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Altered tissue water homeostasis may contribute to edema formation during various stresses including bacterial infection. We observed induction of aquaporin-1 (AQP1) during Staphylococcus aureus infection of cultured cells indicating a potential mechanism underlying altered water homeostasis during infection. To investigate mechanisms of AQP1 induction, we examined the effects of the S. aureus alpha-hemolysin on AQP1 abundance in Balb/c fibroblasts. Fibroblasts incubated with 30 microg/ml hemolysin exhibited a 5-10 fold increase in AQP1 protein within 4-6 hours of exposure. The use of multiple signaling cascade inhibitors failed to affect hemolysin-mediated accumulation of AQP1. However, immunoprecipitation revealed an initial accumulation of ubiquitinated AQP1 followed by a decrease to baseline levels after 4 hours. Immunofluorescence indicated that following hemolysin exposure, AQP1 was no longer on the plasma membrane, but was found in a population of submembrane vacuoles. AQP1 redistribution was further indicated by surface biotinylation experiments suggesting diminished AQP1 abundance on the plasma membrane as well as redistribution out of lipid raft fractions. Live cell confocal microscopy revealed that the pattern of cell volume change observed following hemolysin exposure was altered in cells in which AQP1 was silenced. We conclude that alpha-toxin alters proteasomal processing and leads to intracellular accumulation of AQP1, which may likely contribute to disrupted cell volume homeostasis in infection.

Wydawca

-

Rocznik

Tom

13

Numer

2

Opis fizyczny

p.195-211,fig.,ref.

Twórcy

autor
  • Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle Baltimore, MD 21224, USA
autor
autor
autor
autor
autor

Bibliografia

  • 1. Preston, G.M. and Agre, P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 11110-11114.
  • 2. King, L.S., Kozono, D. and Agre, P. From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell. Biol. 5 (2004) 687-698.
  • 3. Preston, G.M., Carroll, T.P., Guggino, W.B. and Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256 (1992) 385-387.
  • 4. King, L.S., Nielsen, S., Agre, P. and Brown, R.H. Decreased pulmonary vascular permeability in aquaporin-1-null humans. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 1059-1063.
  • 5. Ma, T., Yang, B., Gillespie, A., Carlson, E.J., Epstein, C.J. and Verkman, A.S. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem. 273 (1998) 4296-4299.
  • 6. King, L.S., Choi, M., Fernandez, P.C., Cartron, J.P. and Agre, P. Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N. Engl. J. Med. 345 (2001) 175-179.
  • 7. Saadoun, S, Papadopoulos, M.C., Hara-Chikuma, M. and Verkman, A.S. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434 (2005) 786-792.
  • 8. Umenishi, F. and Schrier, R.W. Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicityresponsive element in the AQP1 gene. J. Biol. Chem. 278 (2003) 15765-15770.
  • 9. Leitch, V., Agre, P. and King, L.S. Altered ubiquitination and stability of aquaporin-1 in hypertonic stress. Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 2894- 2898.
  • 10. Schwan, W.R. and Kopecko, D.J. Uptake of pathogenic intracellular bacteria into human and murine macrophages downregulates the eukaryotic 26S protease complex ATPase gene. Infect. Immun. 65 (1997) 4754-4760.
  • 11. Dubiel, W., Ferrell, K. and Rechsteiner, M. Peptide sequencing identifies MSS1, a modulator of HIV Tat-mediated transactivation, as subunit 7 of the 26 S protease. FEBS Lett. 323 (1993) 276-278.
  • 12. Shibuya, H., Irie, K., Ninomiya-Tsuji, J., Goebl, M., Taniguchi, T. and Matsumoto, K. New human gene encoding a positive modulator of HIV Tatmediated transactivation. Nature 357 (1992) 700-702.
  • 13. Ishikawa, Y., Yuan, Z., Inoue, N., Skowronski, M.T., Nakae, Y., Shono, M., Cho, G., Yasui, M., Agre, P. and Nielsen, S. Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am. J. Physiol. Cell Physiol. 289 (2005) C1303-C1311.
  • 14. Mazzone, A., Tietz, P., Jefferson, J., Pagano, R. and LaRusso, N.F. Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes. Hepatology 43 (2006) 287-296.
  • 15. Zheng, X. and Bollinger Bollag, W. Aquaporin 3 co-locates with phospholipase d2 in caveolin-rich membrane microdomains and is downregulated upon keratinocyte differentiation. J. Invest. Dermatol. 121 (2003) 1487-1495.
  • 16. Guttman, J.A., Samji, F.N., Li, Y., Deng, W., Lin, A. and Finlay, B.B. Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell Microbiol. 9 (2006) 131-141.
  • 17. Le Roy, C. and Wrana, J.L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signaling. Nat. Rev. Mol. Cell. Biol. 6 (2005) 112-126.
  • 18. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. and van der Goot, F.G. Caspase-1 activation of lipid metabolic pathways in response to bacterial poreforming toxins promotes cell survival. Cell 126 (2006) 1135-1145.
  • 19. Padanilam, B.J. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am. J. Physiol. Renal. Physiol. 284 (2003) F608-F627.
  • 20. Szabo, C. Mechanisms of cell necrosis. Crit. Care Med. 33 (2005) S530-S534.
  • 21. Broker, L.E., Kruyt, F.A. and Giaccone, G. Cell death independent of caspases: a review. Clin. Cancer Res. 11 (2005) 3155-3162.
  • 22. Lang, F., Gulbins, E., Szabo, I., Lepple-Wienhues, A., Huber, S.M., Duranton, C., Lang, K.S., Lang, P.A. and Wieder, T. Cell volume and the regulation of apoptotic cell death. J. Mol. Recognit. 17 (2004) 473-480.
  • 23. Bortner, C.D. and Cidlowski, J.A. A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. 56 (1998) 1549-1559.
  • 24. Bortner, C.D. and Cidlowski, J.A. The role of apoptotic volume decrease and ionic homeostasis in the activation and repression of apoptosis. Pflugers Arch. 448 (2004) 313-318.
  • 25. Bortner, C.D. and Cidlowski, J.A. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ. 9 (2002) 1307-1310.
  • 26. Sidhaye, V., Hoffert, J.D. and King, L.S. cAMP regulation of AQP5: Distinct acute and chronic effects in lung epithelial cells. J. Biol. Chem. 280 (2004) 3590-3596.
  • 27. Schmittgen, T.D., Zakrajsek, B.A., Mills, A.G., Gorn, V., Singer, M.J. and Reed, M.W. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal. Biochem. 285 (2000) 194-204.
  • 28. Song, K.S., Li, S., Okamoto, T., Quilliam, L.A., Sargiacomo, M. and Lisanti, M.P. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271 (1996) 9690-9697.
  • 29. Jablonski, E.M., Webb, A.N., McConnell, N.A., Riley, M.C. and Hughes Jr. F.M. Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am. J. Phys.-Cell Phys. 286 (2004) C975-C985.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a8e56117-00a9-4e51-99d4-9ca8b538c6b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.