Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1993 | 38 | 3-4 |
Tytuł artykułu

Early Silurian nonmarine animal remains and the nature of the early continental ecosystem

Treść / Zawartość
Warianty tytułu
Języki publikacji
An assemblage of animal remains, the oldest from undoubted nonmarine beds, with structures attributable to at least one possible terrestrial animal, has been recovered in deposits of Early Silurian, Rhuddanian age, from the Central Appalachians. Other elements of a terrestrial ecosystem are plants at a nonvascular, possible liverwort-like, level of organization, and ascomycetes, predominantly terrestrial saprophytic and parasitic fungi (the oldest known). Together they provide evidence that pre-tracheophytic land plants and fungi, in association with invertebrates, occupied continental habitats by at least the earliest Silurian. While no evidence suggests that these organisms existed in a single community, they provide the earliest fossil record for the coexistence of varied organisms in the nonmarine ecosystem. Terrestrial invertebrates may have co-occurred with the earliest mid-Ordovician embryophytes although no fossil evidence for invertebrates exists before the Late Ordovician/Early Silurian. In view of the limited embryophytic dependence of many soil invertebrates, a preembryophytic evolution for them is consistent with the postulated significance of the soil habitat in terrestrialization and the evolution of feeding strategies among nonpredatory terrestrial invertebrates from microphytophagy to detritivory to herbivory as some emerged from within soils to soil litter to the soil surface. Detritivory can be regarded as a derivative extension of microphytophagy, since detritivores only consume detritus ‘processed’ by microorganisms and may be selecting microorganisms from detrital substrates as the basis of their nutrition.
W kontynentalnych osadach wczesnego syluru z Tuscarora w Apallachach, wraz z zarodnikami przypuszczalnych roślin lądowych, występują mikroskopijne organiczne skamieniałości interpretowane przez autorów jako szczecinki i tchawki lądowych stawonogów. W nawiązaniu do tych nowych stanowisk autorzy dokonują przeglądu najstarszych znanych zespołów lądowych zwierząt i szeroko dyskutują prawdopodobne warunki życia w najpierwotniejszych ekosystemach lądowych.
Opis fizyczny
  • University of Oregon, Eugene, OR 97403, USA
  • Allen, J.R.L. & Williams, B.P.J. 1981. Beaconites antarcticus: a giant channel-associated trace fossil from the Lower Old Red Sandstone of South Wales and the Welsh Borders. Geological Journal 16. 255-269.
  • Almond, J.E. 1985. The Silurian-Devonian fossil record of the Myriapoda. Philosophical Transactions of the Royal Society London B309, 227-237.
  • Banks, H.P. 1981. Peridermal activity (wound repair) in an Early Devonian (Emsian) Trimerophyte from the Gaspe Peninsula, Canada. The Palaeobotanist 28-29, 20-25.
  • Banks, H.P. & Colthart, B.J. 1993. Plant-animal-fungal interactions in Early Devonian trimerophytes from Gaspe, Canada. American Journal of Botany 80, 992-1001.
  • Beeunas, M.A. & Knauth, L.P. 1985. Preserved stable isotopic signature of subaerial diagenesis in the 1.2-b.y. Mescal Limestone, central Arizona: Implications for the timing and development of a terrestrial plant cover. Geological Society of America Bulletin 96, 737-745.
  • Bergstrom, J. 1979. Morphology of fossil arthropods as a guide to phylogenetic relationships. In: A.P. Gupta (ed.) Arthropod Phylogeny, 3-56. Van Nostrand Reinhold, New York City.
  • Bergström, J. 1980. Leddjurens felande länkar (Missing links among the arthropods). Varv 3, 89-93.
  • Berry, W.B.N. & Boucot, A.J. 1970. Correlation of the North American Silurian rocks. Geological Society of America Special Paper 102, 1-289.
  • Bonnet, L. 1973. Le peuplement thecamobien des mousses corticoles. Protistologia 9, 319-338.
  • Boucot, A.J. 1983. Does evolution occur in an ecologic vacuum? II. Journal of Paleontology 57, 1-30.
  • Boucot, A.J. 1990. Evolutionary Paleobiology of Behavior and Coevolution. 725 pp. Elsevier, Amsterdam.
  • Boucot, A.J., Gray, J., & Hoskins, D.M. 1994. New hughmilleriid (Eurypterida) occurrence from the Tuscarora Formation, central Pennsylvania, and its environmental interpretation. New York State Museum, Geological Survey Bulletin 481, 21-24.
  • Bradshaw, M.A. 1981. Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (lower Beacon Supergroup), Antarctica. New Zealand Journal of Geology and Geophysics 24, 615-652.
  • Buick, R. 1992. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255, 74-77.
  • Campbell, S.E. 1979. Soil stabilization by a prokaryotic desert crust: Implications for Precambrian land biota. Origins of Life 9, 335-348.
  • Caster, K.E. & Brooks, H.K. 1956. New fossils from the Canadian-Chazyan (Ordovician) hiatus in Tennessee. Bulletins of American Paleontology 36, 157-199.
  • Chlupač, I. & Havliček, V. 1965. Kodymirus n. g., a new aglaspid merostome of the Cambrian of Bohemia. Sbornik Geologickych Ved, Řada P (Paleontologie) 6, 7-20.
  • Christiansen, K. 1964. Bionomics of Collembola. Annual Review of Entomology 9, 147-178.
  • Cotter, E. 1982. Tuscarora Formation of Pennsylvania. Guidebook Society of Economic Paleontologists and Mineralogists, Eastern Section, 1982 Field Trip. 105 pp.
  • Cotter, E. 1983. Shelf, paralic, and fluvial environments and eustatic sea-level fluctuations in the origin of the Tuscarora Formation (Lower Silurian) of central Pennsyslvania. Journal of Sedimentary Petrology 53, 25-49.
  • Davis, R.C. 1981. Structure and function of two Antarctic terrestrial moss communities. Ecological Monographs 51, 125-143.
  • Denis, R. 1949. Sous-classe des Apterygotes (Apterygogene, Brauer, 1885, Apterygota, Lang, 1889). In: P.-P. Grasse (ed.) Traité de Zoologie, T. IX. Insectes, 112-275. Masson, Paris.
  • Eisenbeis, G. & Wichard, W. 1987. Atlas on the Biology of Soil Arthropods. 437 pp. Springer- -Verlag, Berlin.
  • Garcia-Pichel, F. & Castenholz, R.W. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology 27, 395-409.
  • Garcia-Pichel, F. & Castenholz, R.W. 1993. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Applied and Environmental Microbiology 59, 163-169.
  • Gerson, U. 1982. Bryophytes and invertebrates. In: A.J.E. Smith (ed.) Bryophyte Ecology, 291-332. Chapman and Hall, London.
  • Gevers, T.W. & Twomey, A. 1982. Trace fossils and their environment in Devonian (Silurian?) Lower Beacon strata in the Asgard Range, Victoria Land, Antarctica. In: C. Craddock (ed.) Antarctic Geoscience, 639-647. University of Wisconsin Press, Madison, Wisconsin.
  • Golubic. S. & Campbell, S.E. 1979. Analogous microbial forms in Recent subaerial habitats and in Precambrian cherts: Gloeothece coerulea Geitler and Eosynechococcus moorei Hofmann. Precambrian Research 8, 201-217.
  • Gray, J. 1965. Extraction Techniques. In: B. Kummel & D. Raup (eds) Handbook of Paleontological Techniques, 530-587. Freeman, San Francisco.
  • Gray, J. 1984. Ordovician-Silurian land plants: the interdependence of ecology and evolution. The Palaeontological Association, Special Papers in Palaeontology 32, 281-295.
  • Gray, J. 1985. The microfossil record of early land plants: Advances in understanding of early terrestrialization, 1970-1984. Philosophical Transactions of the Royal Society London B309, 167-192.
  • Gray, J. 1988a. Evolution of the freshwater ecosystem: the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 1-214.
  • Gray, J. 1988b. Land plant spores and the Ordovician-Silurian boundary. Bulletin of the British Museum Natural History (Geology) 43, 351-358.
  • Gray, J. 1991. Tetrahedraletes, Nodospora, and the ‘cross’ tetrad: an accretion of myth. Systematics Association Special Volume 44, 49-87.
  • Gray, J. & Boucot, A.J. 1971. Early Silurian spore tetrads from New York: Earliest New World evidence for vascular plants? Science 173, 918-921.
  • Gray, J. & Boucot, A.J. 1972. Palynological evidence bearing on the Ordovician-Silurian paraconformity in Ohio. Geological Society of America Bulletin 83, 1299-1314.
  • Gray, J. & Boucot, A.J. 1977. Early vascular land plants: proof and conjecture. Lethaia 10, 145-174.
  • Gray, J. & Shear, W. 1992. Early life on land. American Scientist 80, 444-456.
  • Gray, J., Boucot, A.J., Grahn, Y., & Himes, G. 1992. A new record of early Silurian land plant spores from the Paraná Basin, Paraguay (Malvinokaffric Realm). Geological Magazine 129, 741-752.
  • Gray, J., Massa, D., & Boucot, A.J. 1982. Caradocian land plant microfossils from Libya. Geology 10, 197-201.
  • Gray, J., Theron, J.N., & Boucot, A.J. 1986. Age of the Cedarberg Formation, South Africa and early land plant evolution. Geological Magazine 123, 445-454.
  • Greenslade, P.J.M. 1988. Reply to R.A. Crowson’s ‘Comments on Insecta of the Rhynie Chert’ [1985 Entomologia Generalis 11, 097-098]. Entomologia Generalis 13, 115-117.
  • Hoffman, A. & Nitecki, M.H. (eds) 1986. Problematic Fossil Taxa. 267 pp. Oxford University Press, New York.
  • Hofmann, H.J., Pearson, D.A.B., & Wilson, B.H. 1980. Stromatolites and fenestral fabric in Early Proterozoic Huronian Supergroup, Ontario. Canadian Journal of Earth Science 17, 1351-1357.
  • Jackson, T.A. 1973. ‘Humic’ matter in the bitumen of ancient sediments: variations through geologic time. Geology 1, 163-166.
  • Jackson, T.A., Fritz, P., & Drimmie, R. 1978. Stable carbon isotope ratios and chemical properties of kerogen and extractable organic matter in pre-Phanerozoic and Phanerozoic sediments - their interrelations and possible paleobiological significance. Chemical Geology 21, 335-350.
  • Jeram, A.J. 1993. Scorpions from the Middle Devonian of New York, and their implications for morphological disparity in early terrestrial scorpions. 1993 Annual Meeting Geological Society of American, Abstracts with Programs 26, A-83.
  • Jeram, A.J., Selden, P.A., & Edwards, D. 1990. Land animals in the Silurian: Arachnids and myriapods from Shropshire, England. Science 250, 658-661.
  • Kerr, R.A. 1992. Earth scientists assemble atop an ancient rift. Science 258, 1082-1084.
  • Kevan, D.K. McE. 1968. Soil Animals. 244 pp. H.F.& G. Witherby Ltd., London.
  • Kevan, P.G., Chaloner, W.G., & Saville, D.B.O. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology 18, 391-417.
  • Kidston, R. & Lang, W.H. 1921. On Old Red Sandstone plants showing structure from the Rhynie Chert Bed, Aberdeenshire. Part V. The Thallophyta occurring in the peat-bed: the succession of the plants throughout a vertical section of the bed and the conditions of accumulation and preservation of the deposit. Transactions of the Royal Society of Edinburgh 52, 855-902.
  • Knauth, L.P. & Horodyski, R.L. 1992. Life on land in the Proterozoic. 1992 Annual Meeting Geological Society of America, Abstracts with Program 24, A-99.
  • Krantz, G.W. & Lindquist, E.E. 1979. Evolution of phytophagous mites (Acari). Annual Review of Entomology 24, 121-158.
  • Labandeira, C.C., Beall, B.S., & Hueber, F.M. 1988. Early insect diversification: Evidence from a Lower Devonian bristletail from Québec. Science 242, 913-916.
  • Laurence, R.A. 1944. An early Ordovician sinkhole deposit of volcanic ash and fossiliferous sediments in east Tennessee. Journal of Geology 52, 235-249.
  • Little, C. 1983. The Colonisation of Land. 290 pp. Cambridge University Press, Cambridge.
  • Longton, R.E. 1988. The Biology of Polar Bryophytes and Lichens. 391 pp. Cambridge University Press, Cambridge.
  • Marshall, J. 1991. Palynology of the Stonehaven Group, Scotland: evidence for a Mid Silurian age and its geological implications. Geological Magazine 128, 283-286.
  • Mattson Jr., W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11, 119-161.
  • McNamara, K.J. & Trewin, N.H. 1993. A euthycarcinoid arthropod from the Silurian of Western Australia. Palaeontology 36, 319-335.
  • Metting, B. 1990. Soil Algae. In: J.M. Lynch (ed.) The Rhizosphere, 355-368. John Wiley & Sons, Chichester.
  • Norton, R.A. 1985. Aspects of the biology and systematics of soil arachnids, particularly saprophagous and mycophagous mites. Quaestiones Entomologicae 21, 523-541.
  • Norton, R.A., Bonamo, P.M., Grierson, J.D., & Shear, W.A. 1988. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. Journal of Paleontology 62, 259-269.
  • Pollard, J. E. 1985. Evidence from trace fossils. Philosophical Transactions of the Royal Society of London B309, 241-242.
  • Pollard, J.E. & Walker, E.F. 1984. Reassessment of sediments and trace fossils from Old Red Sandstone (Lower Devonian) of Dunure, Scotland, described by John Smith (1909). Géobios 17, 567-576.
  • Proteau, P.J., Gerwick, W.H., Garcia-Pichel, F., & Castenholz, R.W. (in press) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of Cyanobacteria. Experientia.
  • Raasch, G.O. 1939. Cambrian Merostomata. Geological Society of America Special Paper 19, 1-146.
  • Retallack, G.J. 1985. Fossil soils as grounds for interpreting the advent of large plants and animals on land. Philosophical Transactions of the Royal Society London B309, 105-142.
  • Retallack, G.J. & Feakes, C.R. 1987. Trace fossil evidence for Late Ordovician animals on land. Science 235, 61-63.
  • Robbins, E.I., Porter, K.G., & Haberyan, K.A. 1985. Pellet microfossils: Possible evidence for metazoan life in Early Proterozoic time. Proceedings of the National Academy of Sciences 82, 5809-5813.
  • Rolfe, W.D.I. 1980. Early invertebrate terrestrial faunas. In: A.L. Panchen (ed.) The Terrestrial Environment and the Origin of Land Vertebrates, 117-157. Academic Press, London.
  • Selden, P.A. & Shear W.A., 1992. A myriapod identity for the Devonian ʻscorpionʼ Tiphoscorpio hueberi. Berichte des Naturwissenschqftlichen-Medizinischen Vereins in Innsbruck, Supplement 10, 35-36.
  • Selden, P.A. & White, D.E. 1983. A new Silurian arthropod from Lesmahagow, Scotland. Palaeontological Association, Special Papers in Palaeontology 30, 43-49.
  • Selden, P.A., Shear, W.A., & Bonamo, P.M. 1991. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34, 241-281.
  • Shear, W.A. & Kukalova-Peck, J. 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Canadian Journal of Zoology 68, 1807-1834.
  • Shear, W.A., Selden, P.A., Rolfe, W.D.I., Bonamo, P.M., & Grierson, J.D. 1987. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida). American Museum Novitates 2901, 1-74.
  • Sherwood-Pike, M.A. & Gray, J. 1985. Silurian fungal remains: probable records of the Class Ascomycetes. Lethaia 18, 1-20.
  • Smith, N.D. 1970. The braided stream depositional environment: Comparison of the Platte River with some Silurian clastic rocks, North-Central Appalachians. Bulletin of the Geological Society of America 81, 2993-3014.
  • Southwood, T.R.E. 1972. The insect/plant relationship - an evolutionary perspective. Symposia of the Royal Entomological Society of London 6, 3-30.
  • Southwood, T.R.E. 1985. Interactions of plants and animals: patterns and processes. Oikos 44, 5-11.
  • Stebbins, G.L. & Hill, G.J.C. 1980. Did multicellular plants invade the land? The American Naturalist 115, 342-353.
  • Størmer, L. 1970. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Germany. Senckenbergiana Lethaea 51, 335-369.
  • Størmer, L. 1976. Arthropods from the Lower Devonian (Lower Emsian) of Alken an der Mosel, Part 5: Myriapoda and additional forms, with general remarks on fauna and problems regarding invasion of land by arthropods. Senckenbergiana Lethaea 57, 87-183.
  • Størmer, L. 1977. Arthropod invasion of land during Late Silurian and Devonian times. Science 197, 1362-1364.
  • Swift, M.J., Heal, O.W., & Anderson, J.M. 1979. Decomposition in Terrestrial Ecosystems. 372 pp. University of California Press, Berkeley.
  • Tims, J.D. & Chambers, T.C. 1984. Rhyniophytina and Trimerophytina from the early land flora of Victoria, Australia. Palaeontology 27, 265-279.
  • Trewin, N.H. 1976. Isopodichnus in a trace fossil assemblage from the Old Red Sandstone. Lethaia 9, 29-37.
  • Trewin, N.H. 1993. Mixed aeolian sandsheet and fluvial deposits in the Tumblagooda Sandstone, Western Australia. Geological Society of London, Special Publication 73, 223-233.
  • Vegter, J.J. 1983. Food and habitat specialization in coexisting springtails (Collembola, Entomobryidae). Pedobiologia 25, 253-262.
  • Walker, E.F. 1985. Arthropod ichnofauna of the Old Red Sandstone at Dunure and Montrose, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 76, 287-297.
  • Wallwork, J.A. 1976. The Distribution and Diversity of Soil Fauna. 355 pp. Academic Press, London.
  • Walter, D.E. 1988. Predation and mycrophagy by endeostigmatid mites (Acariformes: Prostigmata). Experientia & Applied Acarology 4, 159-166.
  • Webby, B.D. 1968. Devonian trace fossils from the Beacon Group of Antarctica. New Zealand Journal of Geology and Geophysics 11, 1001-1008.
  • Wellman, C.H. & Richardson, J.B. 1993. Terrestrial plant microfossils from Silurian inliers of the Midland Valley of Scotland. Palaeontology 36, 155-193.
  • Woolfe, K.J. 1990. Trace fossils as paleoenvironmental indicators in the Taylor Group (Devonian) of Antarctica. Palaeogography, Palaeogeography, Paleoecology 80, 301-310.
  • Yaekel Jr., L.S. 1962. Tuscarora, Juniata, and Bald Eagle paleocurrents and paleogeography in the Central Appalachians. Bulletin of the Geological Society of America 73, 1515-1540.
  • Yochelson, E.L. & Fedonkin. M.A. 1992. Paleobiology of Climactichnites, an enigmatic Late Cambrian fossil. Smithsonian Contributions to Paleobiology 74, 1-74.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.