PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 52 | 1 |

Tytuł artykułu

Niektore aspekty biodegradacji jednopierscieniowych i wielopierscieniowych weglowodorow aromatycznych [WWA]

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Polycyclic aromatic hydrocarbons (PAHs) are the compounds whose presence in contaminated soils and sediments poses a significant risk to the environment, they show also cytotoxic, mutagenic, and in some cases carcinogenic effects on human tissue. A wide range of different microorganisms in the soils are able to metabolize, cometabolize and utilize the PAHs as a sole source of carbon and energy. The aerobic catabolism of monocyclic and two-, threecyclic aromatic hydrocarbons by bacteria has been extensively studied. Naphthalene was of ten selected as a model compound for the study of PAH degradation because of its high aqueous solubility and the easy isolation of microbes capable of its degradation. Since the first report of a biochemical pathway for naphthalene oxidation by Pseudomonas species in 1964 by Davis and Evans, extensive studies have rigorously defined the metabolic pathway genes, and enzymes involved. In last decade a number of bacteria that metabolise larger PAHs molecules have been isolated. These include Azoarcus evansii, various Mycobacterium species and several Pseudomonas species. A number of different metabolic pathways have been established for the bacterial degradation of PAHs. The genes coding for the enzymes involved in the degradation of alkanes (alk), naphthalene (nah), benzoate via ortho clavage of catechol (in bacteria) or prothocatechuate (in fungi) by the ß-ketoadipate pathway have been extensively characterized. The various microorganisms species mineralizing four-ring PAHs including phenanthrene, pyrene and chrysene have been also isolated.

Wydawca

-

Rocznik

Tom

52

Numer

1

Opis fizyczny

s.89-104,rys.,bibliogr.

Twórcy

autor
  • Instytut Uprawy, Nawozenia i Gleboznawstwa, Zaklad Mikrobiologii Rolniczej, Osada Palacowa, 24-100 Pulawy

Bibliografia

  • [1] Alexander M. 1999. Biodegradation and bioremediation, AP, San Diego, USA, ISBN: 0-12-049861-8: 252-258.
  • [2] Barkay T., Navon-Venezia S., Ron E.Z., Rosenberg E. 1999. Enhancement of solubilization and biodergadation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol. 65: 2697-2702.
  • [3] Barkovski A.L., Korshunova V.E., Pozdnyacova L.I. 1995. Catabolism of phenol and benzoate by Azospirillum strains. App. Soil Eco. 2: 17-24.
  • [4] Bouchez M., Blanchet D., Vandecasteele J.P. 1995. Degradation of polycyclic aromatic hydrocarbons by pure strains and defined strain associations: inhibition phenomena and cometabolism. Appl. Microbiol. Biotechnol. 43(1): 156-164.
  • [5] Caldini G., Cenci G., Manenti R., Morozzi G. 1995. The ability of an environmental izolate of Pseudomonas fluorescens to utilise chrysene and other four-ring polynuclear aromatic hydrocarbon. App. Microbiol. Biotechnol. 44: 225-229.
  • [6] Cerniglia C.E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351-368.
  • [7] Colleran E. 1996. Uses of bacteria in bioremediation. Methods in Biotechnology 2: Bioremediation Protocols.
  • [8] Davies E.M., Murray H.E, Liehr J.G., Powers E.L. 1981. Basic microbial degradation rates and chemical byproducts of selected organic compounds. Water Res. 15: 1125-1127.
  • [9] Ellis L.B.M., Hershberger D., Wackett L.P. 2000. Biocatalysis/Biodegradation Database: microorganisms, genomics and prediction. The University of Minnesota. Nucleic Acids Research 28(1): 377-379.
  • [10] Field J.A., Stams A.J.M., Kato M., Schraa G. 1995. Enhanced biodegradation of aromatic pollutants in cocultures of anerobic and aerobic bacterial consortia. Antonie van Lauewenhoek 67: 47-77.
  • [11] Fletcher J.S, McFarlane J.C, Pfleeger T, Wickliff C. 1990. Influence of root exposure concentration on the fate of nitrobenzene in soybean. Chemosphere 20: 513-523.
  • [12] Gauthier E., Dziel E., Villemur R., Juteau P., Lepine F., Beaudet R. 2003. Initial charactenzation of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichrnent in a two-liquid-phase culture system. J. Appl. Microbiol. 94(2): 301-311.
  • [13] Gescher J., Zaar A., Mohamed M., Schagger H., Fuchs G. 2002. Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. J. Bacteriol. 184(22): 6301-6315.
  • [14] Haigler B.E., Pettigrew C.A., Spain J.C. 1992. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl. Environ. Microbiol. 58(7): 2237-2244.
  • [15] He Z., Spain J.C. 1998. A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 180(9): 2502-506.
  • [16] Hervijnen R., Springael D., Slot P., Govers H.A.J., Parson J.R. 2003. Degradation of anracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthahc acid. J. Appl. Microbiol. 69(1): 186-190.
  • [17] Hughes M.A., Williams P.A. 2001. Cloning and characterization of the pnb genes, encoding enzymes for 4-nitrobenzoate catabolism in Pseudomonas putida TW3. J. Bacteriol. 183(4): 1225-1232.
  • [18] Hung-Kuang C., Zylstra G.J. 1998. Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J. Bacteriol. 180(24): 6529-6537.
  • [19] IARC. International Agency for Research on Cancer. 1987. Monographs on the evaluation of the carcinogenic risks to humans. Overall evaluations of carcinogenicity. Lyon, France. Supplement 7: 440.
  • [20] JuhaszA., Stanley G.A. 1997. Degradation of fluoranthene, pyrene, ben[a]anhtracene and dibenz[a,h]anthracene by Burkholderia cepacia. J. Appl. Microbiol. 83: 189-198.
  • [21] Kästner M., Breuer-Jammali M., Mahro B. 1994. Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbon (PAH). Appl. Microbiol. Biotechnol. 41: 267-273.
  • [22] Kazunga C., Aitken M.D. 2000. Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl. Environ. Microbiol. 66(5): 1917-1922.
  • [23] Khan, A.A., Kim S.-J., Paine D.D., Cerniglia C.E. 2002. Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1, as Mycobacterium vanbaalenii sp. nov. Int. J. Syst. Evol. Microbiol. 52: 1997-2002.
  • [24] Kiemer P., Tshisuaka B., Fetzner S., Lingens F. 1996. Degradation of benzoate via benzoyl-coenzym A and gentisate by Bacillus stearothermophilus PK1 , and purification of gentisate 1,2-diokxygenase. Biol. Fert. Soils 23(3): 307-313.
  • [25] Kiyohara H. , Sugiyama M., Mondello F.J., Gibson D.T., Yano K. 1983. Plasmid involvement in the degradation of polycyclic aromatic hydrocarbons by a Beijerinckia species. Biochem. Biophys. Res. Commun. 29, 111(3): 939-945.
  • [26] Król M.J., Perzyński A. 2002. Wykorzystanie wielopierścieniowych węglowodorów aromatycznych (WWA) jako jedynego źródła węgla w wiązaniu wolnego azotu przez bakterie z rodzaju Azospirillum. Pam. Puł. 131: 69-80.
  • [27] Kurek E., Król M.J., Zielewicz-Dukowska J., Perzyński A.2001. Rozkład produktów naftowych zanieczyszczających glebę przez bakterie wykorzystujące azot atmosferyczny. W: Ekologia w przemyśle rafineryjnym. ISBN 83-915734-0-0: 153-162.
  • [28] Lee K., Gibson D.T. 1996. Toluen and ethylbenzene oxidation by purified naphthalene dioxygenase from Pseudomonas sp. NCIB 9816-4. Appl. Environ. Microbiol. 62(9): 3101-3106.
  • [29] Lessner D.J., Johnson G.R., Parales R.E., Spain J.C., Gibson D.T. 2002. Molecular characterization and substrate of nitrobenzene dixygenase from Comamonas sp. Strain JS765. Appl. Environ. Microbiol. 68(2): 634-641.
  • [30] Liu S., Suflita J.M. 1993. Ecology and evolution of microbial populations for bioremediation. Trends Biotechnol. 11: 344-352.
  • [31] Marchenko A.I., Yorobyov A.V., DyadischevN.R., Socolov M.S. 2001. Enhanced degradation of polycyclic aromatic hydrocarbons in plant rhizosphere. W: Biogeochemical processes and cycling of elements in the environment. (wyd.) Polish Society of Humic Substances. Wrocław: 465-467.
  • [32] Menn F.M., Applegate B.M., Slayer G.S. 1993. NAH plasmid-mediated catabolism anthracene and phenanthrene to naphtolic acids. Appl. Environ. Microbiol. 59: 1938-1942.
  • [33] Mohamed M.E., Zaar A., Ebenau-Jehle C., Fuchs G. 2001. Reinvestigation of a new type of aerobic benzoate metabolism in the proteobacterium Azoarcus evansii. J. Bacteriol. 183(6): 1899-1908.
  • [34] Moody J.D., Freeman J.P., Fu P.P., Cemiglia C.E. 2004. Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl. Environ. Microbiol. 70: 340-345.
  • [35] Morrison R.T., Boyd R.N. 1997. Chemia organiczna, Tom I, PWN Warszawa: 119-120.
  • [36] Mueller J.G., Chapman P.J., Blattmann B.O., Pritchard P.H. 1990. Isolation and characterisation of a fluoranthene-utilising of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56: 1079-1086.
  • [37] Nicholson C.A., Fathepure B.Z. 2004. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic condition. Appl. Environ. Microbiol. 70(2): 1222-1225.
  • [38] Nishino S.F., Spain J.C. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59: 2520-2525.
  • [39] Park H.S., Kim H.S. 2000. Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. J. Bacteriol. 182(3): 537-580.
  • [40] Reddy G.V.B., Gold M.H. 2000. Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146: 405-413.
  • [41] Rius N., Fuste M.C., Guasp C., Lalucat J., Loren J.G. 2001. Clonal population structure of Pseudomonas stutzeri, a species with exceptional genetic diversity. J. Bacteriol. 183: 736- 744.
  • [42] Sanseverino J., Applegate B.M., King J.M.H., Sayler G.S. 1993. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol. 59: 1931-1937.
  • [43] Smith R. V., Rosazza J. P. 1974. Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch. Biochem. Biophys. 161: 551-558.
  • [44] Śliwka E., Kałuzińska I., Kołwzan B., Surygała J. 1997. Badania podatności olejów napędowych na biodegradację. W: Technologie odolejania gruntów, odpadów, ścieków. I Konferencja Naukowo-Techniczna. Polskie Towarzystwo Inżynierii Ekologicznej-Ecology Services sp. z.o.o. Joint Venrure Rafineria Nafty „Glimar" S.A. w Gorlicach, Gorlice-Wysowa Zdrój 1997, Wydawnictwo Ekoinżynieria, ISBN 83-9054-9-7: 97-102.
  • [45] Trzesicka-Młynarz D., Ward O.P. 1995. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed and its component pure cultures, obtained from PAH-contaminated solls. Can. J. Microbiol. 41(6): 470-476.
  • [46] Volkering F., Breure A., van Andel J.G. 1993. Effect of microorganisms on the bioavailability and biodegradation of crystalline naphtalene Appl. Microbiol. Biotechnol. 40: 535-540.
  • [47] Yang Y., Chen R.F., Shiaris M.P. 1994. Metabolism of naphtalene, fluorene, and phanantene: preliminary characterisation of cloned gene cluster from Pseudomonas putida. J. Bacteriol. 176: 2158-2164.
  • [48] Zielewicz-Dukowska J., Kurek E., Król M.J., Perzyński A.2001. Pseudomonas stutzeri -bakterie wiążące azot z wykorzystaniem antracenu, jako jedynego źródła węgla. Biopreparaty w ochronie i użytkowaniu środowiska. Inżynieria Ekologiczna 4: 76-82.
  • [49] Zhang H., Hanada S., Shigematsu T., Shibuya K., Kamagata Y., Kanagawa T., Kurane R. O. Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bactenum isolated from an aquifer polluted with TCE. Int. J. Syst. Evol. Microbiol. 50: 743-749.
  • [50] Zhang H., Kallimanis A., Koukkou A.I. , Drainas C. 2004. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl. Environ. Microbiol. 65(1): 124-131.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a820bf40-9932-4948-90a6-951517350497
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.