PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 50 | 1 |

Tytuł artykułu

Genetic background of host-pathogen interaction between Cucumis sativus L. and Pseudomonas syringae pv. lachrymans

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The interplay of plant resistance mechanisms and bacterial pathogenicity is very complex. This applies also to the interaction that takes place between the pathogen Pseudomonas syringae pv. lachrymans (Smith et Bryan) and the cucumber (Cucumis sativus L.) as its host plant. Research on P. syringae pv. lachrymans has led to the discovery of specific factors produced during pathogenesis, i.e. toxins or enzymes. Similarly, studies on cucumber have identified the specific types of plant resistance expressed, namely Systemic Acquired Resistance (SAR) or Induced Systemic Resistance (ISR). This paper presents a summary of the current state of knowledge about this particular host-pathogen interaction, with reference to general information about interactions of P. syringae pathovars with host plants.

Wydawca

-

Rocznik

Tom

50

Numer

1

Opis fizyczny

p.1-7,ref.

Twórcy

  • Department of Plant Genetics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Department of Plant Pathology, Warsaw University of Life Sciences, Warsaw, Poland
  • Department of Plant Genetics, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Alström S, 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbiol 37: 495-501.
  • Arnold DL, Jackson RW, Fillingham AJ, Goss SC, Taylor JD, Mansfield JW, Vivian A, 2001. Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv.pisi. Microbiology 147: 1171-1182.
  • Bradbury JF, 1986. Guide to plant pathogenic bacteria. Ferry Lane, Kew, Surrey: CAB.
  • Chand JN, Walker JC, 1964. Inheritance of resistance to angular leaf spot of cucumber. Phytopathology 54: 51-53.
  • Cőkműs C, Sayar AH, 1991. Effect of salicylic acid on the control of bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. J Turk Phytopathol 20: 27-32.
  • Collmer A, Badel JL, Charkowski AO, Deng W-L, Fouts DE, Ramos AR, et al. 2000. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci USA 97: 8770-8777.
  • Collmer A, Bauer DW, He SY, Lindeberg M, Kelemu S, Rodriguez-Palenzuela P, et al. 1991. Pectic enzyme production and bacterial plant pathogenicity. In: Hennecke H, Verma DPS, eds. Advances in molecular genetics of plant-microbe interactions. Dordrecht: Kluwer Acad Publ 1: 65-72.
  • Dessert JM, Baker LR, Fobes JF, 1982. Inheritance of reaction to Pseudomonas lachrymans in pickling cucumber. Euphytica 31: 847-855.
  • Durner J, Shah J, Klessig D, 1997. Salicylic acid and disease resistance in plants. Trends Plant Sc 2: 266-274.
  • Fillingham AJ, Wood J, Bevan JR, Crute IR, Mansfield JW, Taylor JD, Vivian A, 1992. Avirulence genes from Pseudomonas syringae pathovars phaseolicola and pis i confer specifity towards both host and non-host species. Physiol Mol Plant Pathol 40: 1-15.
  • Flor HH, 1971. Current status of the gene-for-gene concept. Anu Rev Phytopathol 9: 275-279.
  • Gijsegem van F, Genin S, Boucher Ch, 1995. hrp and avr genes, key determinants controlling the interactions between plants and Gram-negative phytopathogenic bacteria. In: Singh US, Singh RP, Kohmoto K, eds. Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases. Langford Lane, New York, Tokyo: Pergamon, Elsevier Science: 1: 273-289.
  • Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y, 1998. Auxin production is a common feature of most pathovars of Pseudomonas syringae. MPMI 11: 156-162.
  • Grgurina I, Bensaci M, Pocsfalvi G, Mannina L, Cruciani O, Fiore A, et al. 2005. Novel cyclic lipodepsipeptide from Pseudomonas syringae pv. lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob Agents Ch 49: 5037-5045.
  • Hennig J, Dewy R, Cutt J, Klessig D, 1993. Pathogen, salicylic acid and developmental dependent expression of ß-l,3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J 4: 481-493.
  • Hildebrand DC, 1971. Pectate and pectin gels for differentiation of Pseudomonas spp. and other bacterial plant pathogens. Phytopathology 61: 1430-1436.
  • Hutcheson SW, Bretz JR, Charity JC, Losada L, Sussan T, 2003. Regulation and detection of effectors translocated by Pseudomonas syringae. In: Iacobellis NS, Collmer A, Hutcheson SW, Mansfield JW, Morris CE, Murillo J, Schaad NW, Stead DE, Surico G, Ullrich MS, eds. Pseudomonas syringae and related pathogens. Biology and Genetic. Dordrecht: Kluwer Acad Publ: 147-156.
  • Hwang MSH, Morgan RL, Sarkar SF, Wang W, Guttman DS, 2005. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol 71: 5182-5191.
  • Jankiewicz LS, Sobiczewski P, 1997. Fitoaleksyny i inne substancje związane z odpornością roślin przeciwko patogenom [Phytoalexins and other substances related toplantresistance to pathogens]. In: Jankiewicz LS, eds. Regulatory wzrostu i rozwoju roślin. Właściwości i działanie [Plant growth and development regulators. Properties and action]. Warszawa: PWN: 1: 251-273.
  • Kacperska A, 2002. Reakcje roślin na abiotyczne czynniki stresowe [Plant reactions to abiotic stress factors]. In: Kopcewicz J, Lewak S, eds. Fizjologia roślin [Plant Physiology]. Warszawa: PWN: 612-678.
  • Keen NT, Tamaki S, Kobayashi D, Gerhold D, Stayton M, Shen H, et al. 1992. Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant-Microbe Interact 3: 112-117.
  • Keen NT, Williams PH, Walker JC, 1967a. Characterization of a protease produced by Pseudomonas lachrymans. Phytopathology 57: 257-262.
  • Keen NT, Williams PH, Walker JC, 1967b. Protease of Pseudomonas lachrymans in relation to cucumber angular leaf spot. Phytopathology 57: 263-270.
  • Klement Z, Farkas GL, Lovrekovich L, 1964. Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology 54: 474-477.
  • Kozłowska M, Konieczny G, 2003. Biologia odporności roślin na patogeny i szkodniki [Biology of plant resistance to pathogens and pests]. 1 st ed. Poznań: Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego.
  • Krzymowska M, 1998. Roślinne geny odporności i ich rola podczas infekcji [Plant resistance genes and their role during infection]. Postępy Biochemii [Progress in Biochemistry]. 44: 318-324.
  • Liang LZ, Bing YY, Guo JZ, Lian LC, Xun ZC, Li ZL, Yuan YB, Ju ZG, Lin CL, Cao ZX, 1997. Pseudomonas syringae pv. lachrymans induced accumulation of salicylic acid in cucumber leaves. Acta Bot Sinica 39 :1010-1014.
  • Lindgren PB, Panopoulos NJ, Staskawicz BJ, Dahlbeck D, 1988. Genes required for pathogenicity and hypersensitivity are conserved and interchangeable among pathovars of Pseudomonas syringae. Mol Gen Genet 211: 499-506.
  • Liu L, Kloepper JW, Tuzun S, 1995. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85: 843-847.
  • Maleck K, Lawton K, 1998. Plant strategies for resistance to pathogens. Curr Opin Biotech 9: 208-213.
  • Meuwly P, Molders W, Buchala A, Metraux J, 1995. Local and systemic biosynthesis of salicylic acid infected cucumber plants. Plant Physiology 109: 1107-1114.
  • Meuwly P, Molders W, Summermatter K, Stricher L, Metraux J, 1994. Salicylic acid and chitinase in infected cucumber plants. Acta Horticulturae 381: 371-374.
  • Olczak-Woltman H, Bartoszewski G, Mądry W, Niemirowicz-Szczytt K, 2009. Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv. lachrymans) in cucumber (Cucumis sativus L.) and identification of molecular markers linked to resistance. Plant Pathol 58: 145-151.
  • Olczak-Woltman H, Masny A, Bartoszewski G, Plucienniczak A, Niemirowicz-Szczytt K, 2007. Genetic diversity of Pseudomonas syringae pv. lachrymans strains isolated from cucumber leaves collected in Poland. Plant Pathol 56: 373-382.
  • Olczak-Woltman H, Schollenberger M, Mądry W, Niemirowicz-Szczytt K, 2008. Evaluation of cucumber (Cucumis sativus L.) cultivars grown in Eastern Europe and progress in breeding for resistance to angular leaf spot (Pseudomonas syringae pv. lachrymans). Eur J Plant Pathol 122: 385-393.
  • Pohronezny K, Larsen PO, Leben C, 1977. Observations on cucumber fruit invasion by Pseudomonas lachrymans. Plant Dis Rep 62: 306-309.
  • Raupach GS, Kloepper JW, 1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158-1164.
  • Rudolph KWE, 1995. Pseudomonas syringae pathovars. In: Singh US, Singh RP, Kohmoto K, eds. Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases. Langford Lane, New York, Tokyo: Pergamon, Elsevier Science: 1: 47-138.
  • Sawada H, Suzuki F, Matsuda I, Saitou N, 1999. Phylogenese analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene transfer. J Mol Ewol 49: 627-644.
  • Schaad NW, Jones JB, Chun W, 2001. Laboratory guide for identification of plant pathogenic bacteria. Minnesota: APS Press.
  • Shida T, Misato T, 1981. Studies on cucumber angular leaf spot disease: necrosis-inducing toxin production by Pseudomonas syringae pv. lachrymans. Sci Pap Inst Phys Chem Res 75: 4853.
  • Smidt M, Kosuge T, 1978. The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Psysiol Plant Pathol 13: 203-214.
  • Smith JA, Hammerschmidt R, Fulbright DW, 1991. Rapid introduction of systemic resistance in cucumber by Pseudomonas syringae pv. syringae. Physiol Mol Plant Pathol 38: 223-235.
  • Smith-Becker J, Marois E, Huguet EJ, Midland SL, Sims JJ, Keen NT, 1998. Accumulation of salicylic acid and 4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance is preceded by a transient increase in phenylalanine ammonialyase activity in petioles and stems. Plant Physiol 116: 231-238.
  • Spitali M, Smith ARW, 2000. Structure of lipopolysaccharide side-chain of Pseudomonas syringae pv. lachrymans NCPPB 1096, in relation to O-serogroup. J Phytopathol 148: 563-568.
  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG, 1995. Molecular genetics of plant disease resistance. Science 286: 661-666.
  • Staskawicz BJ, Dahlbeck D, Keen NT, 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompability on Glycine max (L.) Merr. Proc Natl Acad Sci USA 81: 6024-6028.
  • Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE, 2001. Common and contrasting themes of plant and animal diseases. Science 292: 2285-2289.
  • Stintzi A, Heitz T, Prasad V, Wiedemenn-Merinoglu S, Kauffmann S, Geoffroy P, et al. 1993. Plant 'pathogenesis-relateď proteins and their role in defense against pathogens. Biochimie 75: 687-706.
  • Stokes T, Kunkel B, Richards E, 2002. Epigenic variation in Arabidopsis disease resistance. Gene Dev 16: 171-182.
  • Strobel NE, Ji C, Gopalan S, Kuc JA, He SY, 1996. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPₛₛ protein. Plant J 9: 431-439.
  • Wehner T, 2005. Gene list for cucumber. Cucurbit Genet Coop Rpt 28-29: 105-141.
  • Wei G, Kloepper J, Tuzun S, 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512.
  • Whalen MC, Stall RE, Staskawicz BJ, 1988. Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci USA 85: 6743-6749.
  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I, 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Envir Microbiol 69: 7343-7353.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a6a24c7b-f5bf-4878-b119-b0fb45c7acb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.