PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 13 | 2 |

Tytuł artykułu

Cell electrophoresis - a method for cell separation and research into cell surface properties

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper, we discuss the application of various methods of cell electrophoresis in research into cell surface properties (analytical methods), and the separation of uniform cell subpopulations from cell mixtures (preparative methods). The emphasis is on the prospects of the development of simplified and versatile methodologies, i.e. microcapillary cell electrophoresis and horizontal cell electrophoresis under near-isopycnic conditions. New perspectives are considered on the use of analytical and preparative cell electrophoresis in research on cell differentiation, neoplastic transformation, cell-cell interactions and the biology of stem cells.

Wydawca

-

Rocznik

Tom

13

Numer

2

Opis fizyczny

p.312-326,fig.,ref.

Twórcy

autor
  • Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
autor

Bibliografia

  • 1. Malström, P., Nelson, K., Jönsson, A., Sjögren, H.O., Walter, H. and Albertsson, P.A. Separation of rat leukocytes by countercurrent distribution in aqueous two-phase systems. Cell Immunol. 37 (1978) 409-421.
  • 2. Perrin-Cocon, L.A., Marche, P.N. and Villiers, C.L. Purification of intracellular compartments involved in antigen processing: a new method based on magnetic sorting. Biochem. J. 338 (1999) 123-130.
  • 3. Walter, H. and Widen, K.E. Differential electrophoretic behavior in aqueous polymer solutions of red blood cells from Alzheimer patients and from normal individuals. Biochim. Biophys. Acta 1234 (1995) 184-190.
  • 4. Gerritsen, T. Modern separation methods of macromolecules and particles. Progress in Separation and Purification, vol. 2 (Perry, E.S. and Van Oss, C.J., Ed.), Wiley-Interscience, NY, 1969, 1-251.
  • 5. Pertoft, H. and Lauren, T.C. Isopycinc separation of cells and cell organelles by centrifugation in modified colloidal silica gradients. in: Methods of Cell Separation, vol. 1 (Catsimpoolas, N., Ed.), Plenum Press, NY, 1977, 25-65.
  • 6. Pretlow II, T.G. and Pretlow, T.P. Separation of viable cells by velocity sedimentation in an isokinetic gradient of ficoll in tissue culture medium. in: Methods of Cell Separation, vol. 1 (Catsimpoolas, N., Ed.), Plenum Press, NY, 1977, 171-191.
  • 7. Catsimpoolas, N. and Griffith, A.L. Transient electrophoresis and sedimentation analyses of cells in density gradients. in: Methods of Cell Separation, vol. 2 (Catsimpoolas, N., Ed.), Plenum Press, NY, 1979, 1-63.
  • 8. Patel, D., Ford, T.C. and Rickwood, D. Fractionation of cells by sedimentation methods. in: Cell Separation. A Practical Approach (Fisher, D., Francis, G.E. and Rickwood, D., Ed.), Oxford University Press, Oxford, 1998, 43-89.
  • 9. Roman, M.C. and Brown, P.R. Free-flow electrophoresis as a preparative separation technique. Anal. Chem. 66 (1994) 86-94.
  • 10. Mehrishi, J.N. and Bauer, J. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 23 (2002) 1984-1994.
  • 11. Slivinsky, G.G., Hymer, W.C., Bauer, J. and Morrison, D.R. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis 18 (1997) 1109-1119.
  • 12. Abramson, H.A., Moyer, L.S. and Gorin, M.H. Electrophoresis of Proteins and the Chemistry of Cell Surfaces, Reinhold, NY, 1942, 1-307.
  • 13. Fuhrmann, G.F. and Ruhenstroth-Bauer, G. Cell electrophoresis employing a rectangular measuring cuvette. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 22-25.
  • 14. Lukiewicz, S. and Korohoda, W. Some recent advances in the techniques of cell microelectrophoresis. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 26-33.
  • 15. Seaman, G.V.F. Electrophoresis using a cylindrical chamber. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 4-21.
  • 16. Vransky, V.K. Die zellelektrophorese. in: Fortschritte der Experimentellen und Theoretischen Biophysik, Band 18 (Beier, W., Ed.), Leipzig, 1974, 1-97.
  • 17. Walter, H. Cell partitioning in two-polymer aqueous phase systems. TIBS (1978) 97-100.
  • 18. Seaman, G.V.F. Electrokinetic behavior of red cells. in: The Red Blood Cells vol. 2 (Mac, D. and Surgenor, N., Ed.), Academic Press, NY, 1975, 1-135.
  • 19. Ambrose, E.J. Cell Electrophoresis, J&A Churchill Ltd., London, 1965, 1-204.
  • 20. Abercrombie, M. and Ambrose, E.J. The surface properties of cancer cells: a review. Cancer Res. 22 (1962) 332-245.
  • 21. Kitagawa, S., Nozaki, O. and Tsuda, T. Study of the relationship between electrophoretic mobility of the diabetic red blood cell and hemoglobin A1c by using a mini-cell electrophoresis apparatus. Electrophoresis 20 (1999) 2560-2565.
  • 22. Johnson, L.A. and Ferris, J.A. Single cell electrophoresis in determining cell death: potential for use in organ transplant research. J. Biochem. Biophys. Methods 63 (2005) 53-68.
  • 23. Arnold, R. Pathological haemocytopherograms of rats and mice. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London 1965, 36-47.
  • 24. Fuhrmann, G.F. Cytopherograms of normal, proliferating and malignant rat liver cells. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 92-98.
  • 25. Ruhenstroth-Bauer, G. The normal and pathological haemocytopherogram of man. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London 1965, 66-75.
  • 26. Preece, A.W. and Sabolović, D. in: Cell Electrophoresis: Clinical Application and Methodology, North-Holland Publ. Co., Amsterdam, 1979, 1-496.
  • 27. Mori, T. and Shimizu, M. The changes of lymphocyte electrophoretic mobility in cancer patient. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.),Walter de Gruyter, Berlin (NY), 1985, 355-366.
  • 28. Rychly, J., Anders, O., Eggers, G. and Schulz, M. Electrophoretic mobility distribution of cells in leukaemia. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 477-483.
  • 29. Korohoda, W. Electrophoretic studies on plant cells III. Electrophoretic mobilities of cell-forms of Myxomycetae Physarum nudum Macbride. Folia Biologica 11 (1963) 465-472.
  • 30. Garrod, D.R. and Gingell, D. A progressive change in the electrophoretic mobility of preaggregation cells of the slime mould, Dictyostelium discoideum. J. Cell Sci. 6 (1970) 277-284.
  • 31. Masui, M., Takata, H. and Kominami, T. Cell adhesion and negative cell surface charges in embryonic cells of the starfish Asterina pectinifera. Electrophoresis 23 (2002) 2087-2095.
  • 32. Thomas, W.A. Dual Adhesive Recognition Systems in Chick Embryonic Cells. in: Developmental Biology vol. 3 (Steinberg, M.S., Ed.), Plenum Publ. Co., NY, 1986, 157-189.
  • 33. Doljanski, F. and Eisenberg, S. The action of neuraminidase on the electrophoretic mobility of liver cells. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 78-84.
  • 34. Fuhrmann, G.F. Selective effects of neuraminidase on cell surfaces. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 85-91.
  • 35. James, A.M. The modification of bacterial surface structures by chemical and enzymic treatments. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 154-169.
  • 36. Seaman, G.V.F. and Cook, G.M.W. Modification of the electrophoretic behaviour of the erythrocyte by chemical and enzymatic methods. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 48-65.
  • 37. Bäumler, H., Donath, E., Krabi, A., Knippel, W., Budde, A. and Kiesewetter, H. Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran. Biorheology 33 (1996) 333-351.
  • 38. Sabolovic, D., Sestier, C., Perrotin, P., Guillet, R., Tefi, M. and Boynard, M. Covalent binding of polyethylene glycol to the surface of red blood cells as detected and followed up by cell electrophoresis and rheological methods. Electrophoresis 21 (2000) 301-306.
  • 39. Wilson, W.W., Wade, M.M., Holman, S.C. and Chaplin, F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43 (2001) 153-164.
  • 40. Wang, C.C., Lu, J.N. and Young, T.H. The alteration of cell membrane charge after cultured on polymer membranes. Biomaterials 28 (2007) 625-631.
  • 41. Weiss, L. The cell periphery metastasis and other contact phenomena. Frontiers of Biology, vol. 7 (Neuberger, A. and Tatum, E.L., Ed.), NorthHolland Publ. Co., Amsterdam, 1979, 1-388.
  • 42. Deyl, Z. Electrophoresis. A Survey of Techniques and Applications. Part A; Techniques. in: Journal of Chromatography Library, vol. 18, Elsevier Scientific Publ. Co., Amsterdam, 1979, 1-385.
  • 43. Ertan, N.Z. and Rampling, M.W. Effect of ionic strength of buffer on the measurement of erythrocyte electrophoretic mobility. Med. Sci. Monit. 9 (2003) 378-381.
  • 44. Fürész, J., Pál, K., Budavári, I. and Lapis, K. The physico-chemical properties of tumor cells with different metastatic potential. Neoplasma 32 (1985) 689-693.
  • 45. Forrester, J.A. Microelectrophoresis of normal and polyoma virus transformed hamster kidney fibroblasts. in: Cell Electrophoresis (Ambrose, E.J., Ed.), J&A Churchill Ltd., London, 1965, 115-124.
  • 46. Gardner, B. The effect of dextrans on zeta potential. Proc. Soc. Exp. Biol. Med. 131 (1969) 1115-1118.
  • 47. Jovtchev, S., Djenev, I., Stoeff, S. and Stoylov, S. Role of electrical and mechanical properties of red blood cells for their aggregation. Colloids and Surfaces A: Physicochem. Engineer. Asp. 164 (2000) 95-104.
  • 48. Neu, B., Armstrong, J.K., Fisher, T.C. and Meiselman, H.J. Surface characterization of poly(ethylene glycol) coated human red blood cells by particle electrophoresis. Biorheology 40 (2003) 477-487.
  • 49. Eggleton, P. Separation of cells using free flow electrophoresis. in: Cell Separation. A Practical Approach (Fisher, D., Francis, G.E. and Rickwood, D., Ed.), Oxford University Press, Oxford, 1998, 213-252.
  • 50. Kuhn, R., Wagner, H., Mosher, R.A. and Thormann, W. Experimental and theoretical investigation of the stability of stepwise pH gradients in continuous flow electrophoresis. Electrophoresis 8 (1987) 503-508.
  • 51. Chaubal, K.A. Cell electrophoretic mobility as an aid to study biological systems. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.) Walter de Gruyter, Berlin (NY), 1985, 515-526.
  • 52. Schüt, W., Thomaneck, U., Knippel, E., Rychly, J. and Klinkmann, H. Suitability of automated single cell electrophoresis (ASCE) for biomedical and clinical applications: General remarks. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 313-332.
  • 53. Righetti, P.G., Van Oss, C.J. and Vanderhoff, J.W. Electrokinetic Separation Methods, Elsevier/North-Holland Biomedical Press, Amsterdam, 1979, 1-273.
  • 54. Desai, M.J. and Armstrong, D.W. Separation, identification, and characterization of microorganisms by capillary electrophoresis. Microbiol. Mol. Biol. Rev. 67 (2003) 38-57.
  • 55. Ichiki, T., Ujiie, T., Shinbashi, S., Okuda, T. and Horiike, Y. Immunoelectrophoresis of red blood cells performed on microcapillary chips. Electrophoresis 23 (2002) 2029-2034.
  • 56. Jabeen, R., Payne, D., Wiktorowicz, J., Mohammad, A. and Petersen, J. Capillary electrophoresis and the clinical laboratory. Electrophoresis 27 (2007) 2413-2438.
  • 57. Omasu, F., Nakano, Y. and Ichiki, T. Measurement of the electrophoretic mobility of sheep erythrocytes using microcapillary chips. Electrophoresis 26 (2005) 1163-1167.
  • 58. Seaman, G.V.F. and Knox, R.J. Particle electrophoresis for quality assurance and process control. Electrophoresis 22 (2001) 373-385.
  • 59. Woods, L.A, Roddy, T.P. and Ewing, A.G. Capillary electrophoresis of single mammalian cells. Electrophoresis 25 (2004) 1181-1187.
  • 60. Lu, W.H., Deng, W.H., Liu, S.T., Chen, T.B. and Ra, P.F. Capillary electrophoresis of erythrocytes. Anal. Biochem. 314 (2003) 194-198.
  • 61. Rathore, A.S. Theory of electroosmotic flow, retention and separation efficiency in capillary electrochromatography. Electrophoresis 23 (2002) 3827-3846.
  • 62. Tsuda, T., Kitagawa, S. and Yamamoto, Y. Estimation of electrophoretic mobilities of red blood cells in 1-G and microgravity using a miniature capillary electrophoresis unit. Electrophoresis 23 (2002) 2035-2039.
  • 63. Watarai, H. and Namba, M. Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system. J. Chromatogr. A 961 (2002) 3-8.
  • 64. Hsu, J.P., Hsieh, T.S., Young, T.H. and Tseng, S. Electrophoresis of biological cells: charge-regulation and multivalent counterions association model. Electrophoresis 24 (2003) 1338-1346.
  • 65. Chiari, M. and Righetti, P.G. New types of separation matrices for electrophoresis. Electrophoresis 16 (1995) 1815-1829.
  • 66. Platsoucas, C.D., Good, R.A. and Gupta, S. Separation of human T lymphocyte subpopulations (Tμ, Tγ) by density gradient electrophoresis. Proc. Natl. Acad. Sci. USA 76 (1979) 1972-1976.
  • 67. Josefowicz, J.Y. Electrophoretic light scattering and its application to the study of cells. in: Methods of Cell Separation, vol. 2 (Catsimpoolas, N., Ed.), Plenum Press NY, 1979, 67-91.
  • 68. Heidrich, H.G. and Hannig, K. Separation of cell population by free-flow electrophoresis. Methods Enzymol. 171 (1989) 513-531.
  • 69. Zeiller, K., Löser, R., Pascher, G. and Hannig, K. Free-flow electrophoresis II: Analysis of the method with respect to preparative cell separation. Hoppe-Seyler’s Z Physiol. Chem. 356 (1975) 1225-1244.
  • 70. Hansen, E. Preparative free flow electrophoresis of lymphoid cells: A review. in: Cell Electrophoresis (Schütt, W. and Klinkmann, H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 287-304.
  • 71. Sengeløv, H. and Borregaard, N. Free-flow electrophoresis in subcellular fractionation of human neutrophils. J. Immunol. Methods 232 (1999) 145-152.
  • 72. Morré, D.J., Morré, D.M. and van Alstine, J.M. Separation of endosomes by aqueous two-phase partition and free-flow electrophoresis. J. Chromatogr. B 711 (1998) 203-215.
  • 73. Wang, Y., Hancock, W.S., Weber, G., Eckerskorn, C. and Palmer-Toy, D. Free-flow electrophoresis coupled with liquid chromatography/mass spectrometry for a proteomic study of the human cell line (K562/CR3). J. Chromatogr. A 1053 (2004) 269-278.
  • 74. Mehrishi, J.N. Molecular aspects of the mammalian cell surface. in: Progress in Biophysics and Molecular Biology (Butler, J.A.V. and Noble, D., Ed.), Pergamon Press, Oxford, 1972, 3-70.
  • 75. Cai, W.B., Roberts, S.A. and Potten, C.S. The number of clonogenic cells in crypts in three regions of murine large intestine. Int. J. Radiat. Biol. 71 (1997) 573-579.
  • 76. Chan, R.W., Schwab, K.E. and Gargett, C.E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 70 (2004) 1738-1750.
  • 77. Friedl, P., Brocker, E.B. and Zanker, K.S. Integrins, cell matrix interactions and cell migration strategies: fundamental differences in leukocytes and tumor cells. Cell Adhes. Commun. 6 (1998) 225-236.
  • 78. Lindhout, E., Figdor, C.G. and Adema, G.J. Dendritic cells: migratory cells that are attractive. Cell Adhes. Commun. 6 (1998) 117-123.
  • 79. Reilly, C.E. Astrocytes instruct stem cells to differentiate into neurons. J. Neurol. 249 (2002) 950-952.
  • 80. Wang, N., Wilkin, C., Böcking, A. and Tribukait, B. Evaluation of tumor heterogeneity of prostate carcinoma by flow- and image DNA cytometry and histopathological grading. Anal. Cell Pathol. 20 (2000) 49-62.
  • 81. Wyckoff, J.B., Segall, J.E. and Condeelis, J.S. The collection of the motile population of cells from a living tumor. Cancer Res. 60 (2000) 5401-5404.
  • 82. Armstrong, D.W., Schulte, G., Schneiderheinze, J.M. and Westenberg, D.J. Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal. Chem. 71 (1999) 5465-5469.
  • 83. Ellinger, I., Klapper, H., Courtoy, P.J., Vaerman, J.P. and Fuchs, R. Different temperature sensitivity of endosomes involved in transport to lysosomes and transcytosis in rat hepatocytes: analysis by free-flow electrophoresis. Electrophoresis 23 (2002) 2117-2129.
  • 84. Mohr, H. and Volkl, A. Isolation of peroxisomal subpopulations from mouse liver by immune free-flow electrophoresis. Electrophoresis 23 (2002) 2130- 2137.
  • 85. Weber G., Grimm, D. and Bauer, J. Application of binary buffer systems to free flow cell electrophoresis. Electrophoresis 21 (2000) 325-328.
  • 86. Wilk, A., Rośkowicz, K. and Korohoda, W. A new method for the preparative and analytical electrophoresis of cells. Cell. Mol. Biol. Lett. 11 (2006) 579-593.
  • 87. Wilson, W.W., Wade, M.M., Holman, S.C. and Champlin, F.R. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43 (2001) 153-164.
  • 88. Young, T.H., Hung, C.H., Huang, S.W., Hsieh, T.S. and Hsu, J.P. Determination of surface charge properties of PC-12 cells by electrophoresis. J. Colloid Interface Sci. 285 (2005) 557-561.
  • 89. Erskine, L., Stewart, R. and McCaig, C.D. Electric field-directed growth and branching of cultured frog nerves: effects of aminoglycosides and polycations. J. Neurobiol. 26 (1995) 523-536.
  • 90. Gingell, D. Membrane surface potential in relation to a possible mechanism for intercellular interactions and cellular response: a physical basis. J. Theor. Biol. 17 (1967) 451-482.
  • 91. Givan, A.L. Flow cytometry: an introduction. Methods Mol. Biol. 263 (2004) 1-32.
  • 92. Haraguchi, N., Inoue, H., Tanaka, F., Mimowi, K., Utsunomiya, T., Sasaki, A. and Mori, M. Cancer stem cells in human gastrointestinal cancers. Hum. Cell 19 (2006) 24-29.
  • 93. Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. and Dencher, N.A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370 (1994) 379-382.
  • 94. Kamiya, A., Gonzalez, F.J. and Nakauchi, H. Identification and differentiation of hepatic stem cells during liver development. Front. Biosci. 111 (2006) 1302-1310.
  • 95. Woods, L.A., Powell, P.R., Paxon, T.L. and Ewing, A.G. Analysis of Mammalian Cell Cytoplasm with Electrophoresis in Nanometer Inner Diameter Capillaries. Electroanalysis 17 (2005) 1192-1197.
  • 96. Xuan, X., Hu, G. and Li, D. Joule heating effects on separation efficiency in capillary zone electrophoresis with an initial voltage ramp. Electrophoresis 27 (2006) 3171-3180.
  • 97. Wilk, A., Urbańska, K., Woolley, D.E. and Korohoda, W. Cell separation with horizontal cell electrophoresis under near-isopycnic conditions on a “density cushion”. Cell. Mol. Biol. Lett. 13 (2008), in press.
  • 98. Akiba, T., Nishi, A., Takaoki, M., Matsumiya, H., Tomita, F., Usami, R. and Nagaoka, S. Separation of bacterial cells by free flow electrophoresis under microgravity: a result of the spacelab – Japan project on space shuttle flight sts–47. Acta Astron. 36 (1995) 177-181.
  • 99. Hannig, K., Kowalski, M., Klock, G., Zimmermann, U. and Mang, V. Freeflow electrophoresis under microgravity: evidence for enhanced resolution of cell separation. Electrophoresis 11 (1990) 600-604.
  • 100. Todd, P. Microgravity cell electrophoresis experiments on the space shuttle: a 1984 overview. in: Cell Electrophoresis (Schütt, W. and Klinkmann H., Ed.), Walter de Gruyter, Berlin (NY), 1985, 3-19.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a625cad6-598c-46ba-9cd5-6e4755c9edfc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.