PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 58 | 4 |

Tytuł artykułu

Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Penicillium brevicompactum highly tolerated cobalt concentrations of 50, 200, 800 and 1000 ppm both through cell wall and intracellular sequestration - immobilization of the metal on/within the cell wall, cell wall thickness, presence of electron-dense deposits inside vacuoles (thiol peptides sequestering cobalt) and in the cytoplasm (cobalt), and presence of matrixed electron-dense deposits, only at 800 and 1000 ppm, were observed. Increased vacuole formation and plasmolysis were also observed. Fraction number 9 of the cell free extract showed maximum cobalt uptake for all the investigated cobalt concentrations. In this fraction, glutathione was only induced at 500, 800 and 1000 ppm. Maximum glutathione concentration supported maximum cobalt uptake at 800 ppm. Low molecular weight protein profiles of fraction number 9 revealed that the presence of cobalt induced the appearance of new proteins that were not detected in the same fraction of the control. These low molecular weight peptides (12-5 KDa) suggest the production of Co-metallothioneins. This is the first report of cobalt-induced glutathione by P. brevicompactum and suggests the possible production of phytochelatins.

Wydawca

-

Rocznik

Tom

58

Numer

4

Opis fizyczny

p.327-338,fig.,ref.

Twórcy

autor
  • The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt

Bibliografia

  • Agency for Toxic Substances and Disease Registry (ATSDR). 2004. Toxicological Profile for cobalt. Atlanta, GA: US Department of Health and Human Services, Public Health Service, http: //www.thecdi.com/cdi/images/documents/facts/Cobalt_FactsHS&E.pdf
  • Amoozegar M.A., M. Ashengroph, F. Malekzadeh, M.R. Razavi, S. Naddaf and M. Kabiri. 2008. Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6. Microbiol. Rex.163: 456-465.
  • Bhagat R. and S. Srivastava. 1994. Effect of zinc on morphology and ultrastructure of Pseudomonas stutzeri RS34. J. Gen. Appl. Microbiol. 40: 265-270.
  • Borghese R., F. Borsetti, P. Foladori, G. Ziglio and D. Zannoni. 2004. Effects of the metalloid oxyanions tellurite (TeO3-2) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Appl. Environ. Microbiol. 70: 6595-6602.
  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  • Cabral J.P.S. 1990. Plasmolysis induced by very low concentrations of Cu²⁺ in Pseudomonas syringae ATCC 12271, and its relation with cation fluxes. J. Gen. Microbiol. 136: 2481-2487.
  • Caesar-Tonthat T., F. Kloeke, G. Van Ommen, G. Geesey and J.M. Henson. 1995. Melanin Production by a Filamentous Soil Fungus in Response to Copper and Localization of Copper Sulfide by Sulfide-Silver Staining. Appl. Environ. Microbiol. 61: 1968-1975.
  • Clemens S., E.J. Kim, D. Neumann and J.I. Schroeder. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 18: 3325-3333.
  • Collin-Hansen C, A.S. Pedersen, R.A. Andersen and E. Steinnes. 2007. First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis. Mycologia. 99: 161-174.
  • Courbot M., L. Diez, R. Ruotolo, M. Chalot and P. Leroy. 2004. Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl. Environ. Microbiol. 70: 7413-7417.
  • Farrag R.M., M. M. Mohamadein and A.A. Mekawy. 2008. Scanning Electron Microscopy and Energy-Dispersive X-Ray Microanalysis of Penicillium brevicompactum Treated with Cobalt. Pol. J. Microbiol 57: 321-326.
  • Figueira E.M.A.P., A.I.G. Lima and S.I.A. Pereira. 2005. Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can. J. Microbiol. 51: 7-14.
  • Frisvad J.C. and O. Filterborg. 1983. Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl. Environ. Microbiol. 46(6): 1301-1310.
  • Gelmi M., P. Apostoli, E. Cabibbo, S. Porru, L. Alessio and A. Turano. 1994. Resistance to cadmium salts and metal absorption by different microbial species. Curt: Microbiol. 29: 335-341.
  • Gupta R., P. Ahuja, S. Khan, R.K. Saxena and H. Mohapatra. 2000. Microbial biosorbents: Meeting challenges of heavymetal pollution in aqueous solutions. Curr. Sci. 78: 967-973.
  • Ha S.B., A.P. Smith, R. Howden, W.M. Dietrich, S. Bugg, M.J. O'Connell, P.B. Goldsbrough and C.S. Cobbett. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. The Plant Cell 11: 1153-1163.
  • Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53:1-11.
  • Hutchison R.S., Q. Groom and D.R. Ort (2000). Differential effects of chilling induced photooxidation on the redox regulation of photosynthetic enzymes. Biochem. 39: 6679-6688.
  • Jaeckel P., G. Krauss, S. Menge, A. Schierhorn, P. Rücknagel and G. Krauss. 2005. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem. Biophys. Res. Commun. 333: 150-155.
  • Li A., Y. Lu, R. Zhen, M. Szczypka, D.J. Thiele and P.A. Rea. 1997. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisae: YCF1-catalyzed transport of bis(glutathinato) cadmium. Proc. Natl. Acad. Sci. U.S.A. 94: 42-47.
  • Mir G., J. Domencch, G. Huguet, W. Guo, P. Goldsbrough, S. Atrian and M. Molinas. 2004. A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J. Exp. Bot. 55: 2483-2493.
  • Nazareth S. and T. Marbaniang. 2008. Effect of heavy metals on cultural and morphological growth characteristics of halotolerant Penicillium morphotypes, J. Basic Microbiol. 48(5): 363-369.
  • Ortiz D.F., L. Kreppel, D.M. Speiser, G. Scheel, G. McDonald and D.W. Ow. 1992. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11 3491-3499.
  • Palmiter, R.D. 1998. The elusive function of metallothioneins. Proc. Natl. Acad. Sci. 95: 8428-8430.
  • Prasad M.N.V. 2004. Heavy Metal Stress in Plants from Bio-molecules to Ecosystems, 2nd edition. Springer. Narosa Publishing House, New Delhi, India.
  • Rajwade J.M., K.M. Paknikar. 2003. Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application. Hydrometalluy 71: 243-248.
  • Razak, A.A.; Ghoneimy, E.A. and M.A. El-Meleigy. 1990. Selenium chelatins in Aspergillus fumigatus and Penicillium chrysogenum. Az. J. Microbiol. 8: 249-258.
  • Rea P.A., Z.S. Li, Y.P. Lu and Y.M. Drozdowicz. 1998. From vacuolar GS-X pumps to multispecific ABC transporters. Anna. Rev. Plant. Physiol. Plant. Mol. Biol. 49: 727-760.
  • Riccillo P.M., C.I. Muglia, F.J. De Bruijn, A.J. Roe, I.R. Booth and O.M. Aguilar. 2000. Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J. Bacteriol. 182: 1748-1753.
  • Saxena D. and S. Srivastava. 1999. Copper resistance in Candida guilliermondii strain DS31. Curr. Sci. 76: 237-240.
  • Sigee D.C. and R.H. AL-Rabaee. 1986. Nickel toxicity in Pseudomonas tabaci: Single cell and bulk sample analysis of bacteria cultured at high cation levels. Protoplasma 130: 171-185.
  • Sun F. and Z. Shao. 2007. Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles 11: 853-8.
  • Tomaszewska B. 2002. Glutathione and thiol metabolism in metal exposed plants, pp. 37-58. In: Prasad M.N., Strzałka, Kazimierz (eds). Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Springer.
  • Tsekova K., M. Ianisa, V. Denchevaa and S. Ganevab. 2007. Biosorption of binary mixtures of copper and cobalt by Penicillium brevicompactum. Zeitschrift fuer Naturforschung 62c: 261-264.
  • Vaituzis Z., Jr. Nelson, L.W. Wan and R.R. Cotwell. 1975. Appl. Microbiol. 29: 275-286.
  • Vasak M. and D.W. Hasler. 2000. Metallothioneins: New functional and structural insights. Curr. Opin. Chem. Biol. 4: 177-183.
  • Vatamaniuk O.K., S. Mari, Y.P. Lu and P.A. Rea. 1999. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. 96: 7110-7115.
  • Volesky B. 1990. Biosorption by fungal biomass. pp. 140-159. In: Volesky B. (ed.). Biosorption of Heavy Metals. CRC Press, USA.
  • Xiang C. and D.J. Oliver. 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant Cell 10: 1539-1550.
  • Xiang C, L.W. Bonnie, E.M. Christensen and D.J. Oliver. 2001. The biological function of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 126: 564-574.
  • Zain M.E. 1998. Modern approaches to the taxonomy of fungi. Ph.D. Thesis, Botany and Microbiology Department, Faculty of Science for Boys, Al-Azhar Univ., Cairo, Egypt.
  • Zapotoczny S., A. Jurkiewicz, G. Tylko, T. Anielska and K. Turnau. 2007. Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiol. Res. 162: 219-228.
  • Zhu Y.L., E.A.H. Pilon-Smiths, L. Jouanin, and N. Terry.1999. Overexpression of glutathione synthase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119: 73-79.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a5821549-d3ed-419b-8912-67856c10c54e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.