PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 2 |

Tytuł artykułu

A new look at adaptive mutations in bacteria

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This is a short survey of the adaptive mutation processes that arise in non- or slowly- dividing bacterial cells and includes: (i) bacterial models in which adaptive mutations are studied; (ii) the mutagenic lesions from which these mutations derive; (iii) the influence of DNA repair processes on the spectrum of adaptive mutations. It is proposed that in starved cells, likely as during the MFD phenomenon, lesions in tRNA suppressor genes are preferentially repaired and no suppressor tRNAs are formed as a result of adaptive mutations. Perhaps the most provocative proposal is (iv) a hypothesis that the majority of adaptive mutations are selected in a pre-apoptotic state where the cells are either mutated, selected, and survive, or they die.

Wydawca

-

Rocznik

Tom

47

Numer

2

Opis fizyczny

p.451-457

Twórcy

autor
  • Polish Academy of Sciences, A.Pawinskiego 5a, 02-106 Warsaw, Poland

Bibliografia

  • 1. Cairns, J., Overbaugh, J. & Miller, S. (1988) The origin of mutants. Nature 335, 142-145.
  • 2. Cairns, J. & Foster, P.L. (1991) Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128, 695-701.
  • 3. Hall, B.G. (1990) Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126, 5-16.
  • 4. Hall, B.G. (1998) Adaptive mutagenesis: A process that generates almost exclusively beneficial mutations. Genetica 102, 109-125.
  • 5. Foster, P.L. (1993) Adaptive mutation: The uses of adversity. Annu. Rev. Microbiol. 47, 467-504.
  • 6. Foster, P.L. (1998) Adaptive mutation: Has the unicorn landed? Genetics 148, 1453-1459.
  • 7. Hall, B.G. (1997) On the specificity of adaptive mutations. Genetics 145, 39-44.
  • 8. Foster, P.L. (1997) Nonadaptive mutations occur on the F' episome during adaptive mutation conditions in Escherichia coli. J. Bacteriol. 179, 1550-1554.
  • 9. Torkelson, J., Harris, R.S., Lombardo, M.-J., Nagendran, J., Thulin, C. & Rosenberg, S.M. (1997) Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 16, 3303-3311.
  • 10. Foster, P.L. & Cairns, J. (1992) Mechanisms of directed mutation. Genetics 131, 783-789.
  • 11. Rosenberg, S.M. (1994) In pursuit of a molecular mechanism for adaptive mutation. Genome 37, 893-899.
  • 12. Prival, M.J. & Cebula, T.A. (1996) Adaptive mutation and slow-growing revertants of an Escherichia coli lacZamber mutant. Genetics 144, 1337-1341.
  • 13. Foster, P.L. & Trimarchi, J.M. (1995) Adaptive reversion of a episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc. Natl. Acad. Sci. U.S.A. 92, 5487-5490.
  • 14. Radicella, J.P., Park, P.U. & Fox, M.S. (1995) Adaptive mutation in Escherichia coli: A role for conjugation. Science 268, 418-420.
  • 15. Galitsky, T. & Roth, J.R. (1995) Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Science 268, 421- 423.
  • 16. Bridges, B.A. (1994) Starvation-associated mutation in Escherichia coli: A spontaneous lesion hypothesis for directed mutation. Mutat. Res. 307, 149-156.
  • 17. Bridges, B.A. & Timms, A.R. (1997) Mutation in Escherichia coli under starvation conditions: A new pathway leading to small deletions in strains defective in mismatch correction. EMBO J. 16, 3349-3356.
  • 18. Bridges, B.A. & Ereira, S. (1998) DNA synthesis and viability of a mutT derivative of Escherichia coli WP2 under conditions of amino acid starvation and relation to stationary-phase (adaptive) mutation. J. Bacteriol. 180, 2906- 2910.
  • 19. Prival, M.J. & Cebula, T.A. (1992) Sequence analysis of mutations arising during prolonged starvation of Salmonella typhimurium. Genetics 132, 303-310.
  • 20. Taverna, P. & Sedgwick, B. (1996) Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli. J. Bacteriol. 178, 5105-5111.
  • 21. Bridges, B.A. (1995) mutY directs mutation? Nature 375, 741.
  • 22. Bridges, B.A. (1996) Elevated mutation rate in mutT bacteria during starvation: Evidence of DNA turnover? J. Bacteriol. 178, 2709- 2711.
  • 23. Bridges, B.A., Sekiguchi, M. & Tajiri, T. (1996) Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: Implications for the role of 7,8-dihydro- 8-oxoguanine. Mol. Gen. Genet. 251, 352- 357.
  • 24. Nghiem, Y., Cabrera, M., Cupples, C.G. & Miller, J.H. (1992) The mutY gene: A mutator locus in Escherichia coli that generates GC AT transversions. Proc. Natl. Acad. Sci. U.S.A. 85, 2709-2713.
  • 25. Moriya, M. & Grollman, A.P. (1993) Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:CT:A transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol. Gen. Genet. 239, 72-76.
  • 26. Maki, H. & Sekiguchi, M. (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273-275.
  • 27. Taddei, F., Hayakawa, H., Bouton, M.-F., Crinesi, I., Matic, I., Sekiguchi, M. & Radman, M. (1997) Counteraction by Mut Y protein of transcriptional errors caused by oxidative damage. Science 278, 128-130.
  • 28. Bridges, B.A. (1997) MutT prevents leakness. Science 278, 78-79.
  • 29. Cheng, K.C., Cahill, D.S., Kasai, H., Loeb, L.A. & Nishimura, S. (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G T and A C substitutions. J. Biol. Chem. 267, 166-172.
  • 30. Shibutani, S., Takeshita, M. & Grollman, A.P. (1991) Insertion of specific bases during DNA synthesis past the oxidation damaged base 8-oxoG. Nature 349, 431-434.
  • 31. Foster, P.L., Gudmundsson, G., Trimarchi, J.M., Cai, H. & Goodman, M.F. (1995) Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92, 7951-7955.
  • 32. Harris, R.S., Bull, H.J. & Rosenberg, S.M. (1997) A direct role for DNA polymerase III in adaptive reversion of a frameshift mutation in Escherichia coli. Mutat. Res. 375, 19-24.
  • 33. Timms, A.R. & Bridges, B.A. (1998) Reversion of the tyrosine ochre strain Escherichia coli WU3610 under starvation conditions depends on a new gene tas. Genetics 148, 1627-1635.
  • 34. Ripley, L.S. (1990) Frameshift mutation: Determinants of specificity. Annu. Rev. Genet. 24, 189-213.
  • 35. Foster, P.L. (1999) Are adaptive mutations due to decline in repair? The evidence is lacking. Mutat. Res. 436, 179-184.
  • 36. Harris, R.S., Feng, G., Ross, K.J., Sidhu, R., Thulin, C., Longerich, S., Szigety, S.K., Hastings, P.J., Winkler, M.E. & Rosenberg, S.M. (1999) Mismatch repair is diminished during stationary-phase mutation. Mutat. Res. 437, 51-60.
  • 37. Bregeon, D., Matic, I., Radman, M. & Taddei, F. (1999) Inefficient mismatch repair: Genetic defects and down regulation. Indian Acad. Sci. 78, 21-28.
  • 38. Longerich, S., Galloway, A.M., Harris, R.S., Wong, C. & Rosenberg, S.M. (1995) Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc. Natl. Acad. Sci. U.S.A. 92, 12017-12020.
  • 39. Witkin, E.M. (1994) Mutation frequency decline revisited. BioEssays 40, 437-444.
  • 40. Wojcik, A. & Janion, C. (1997) Mutation induction and mutation frequency decline in halogen light-irradiated Escherichia coliK-12 AB1157 strains. Mutat. Res. 390, 85-92.
  • 41. Fabisiewicz, A. & Janion, C. (1998) DNA mutagenesis and repair in UV-irradiated E. coli K-12 under condition of mutation frequency decline (MFD). Mutat. Res. 402, 59-66.
  • 42. Bockrath, R., Barlow, A. & Engstrom, J. (1987) Mutation frequency decline in Escherichia coli B/r after mutagenesis with ethyl methanesulfonate. Mutat. Res. 183, 241- 247.
  • 43. Grzesiuk, E. & Janion, C. (1994) The frequency of MMS-induced, umuDC-dependent, mutations decline during starvation in Escherichia coli. Mol. Gen. Genet. 245, 486-492.
  • 44. Selby, C.P., Witkin, S.M. & Sancar, A. (1991) Escherichia coli mfdmutant deficient in mutation frequency decline lacks strand-specific repair: In vitro complementation with purified coupling factor. Proc. Natl. Acad. Sci. U.S.A. 88, 11574-11578.
  • 45. Selby, C.P. & Sancar, A. (1994) Mechanism of transcription-repair coupling and mutation frequency decline. Microbiol. Rev. 58, 317- 329.
  • 46. Bridges, B.A. (1995) Starvation-associated mutation in Escherichia coli strains defective in transcription repair coupling factor. Mutat. Res. 329, 49-56.
  • 47. Taddei, F., Matic, I. & Radman, M. (1995) cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc. Natl. Acad. Sci. U.S.A. 92, 11736-11740.
  • 48. Walker, G.W. (1995) SOS-regulated proteins in translesion. DNA synthesis and mutagenesis. Trends Biochem. Sci. 20, 416-420.
  • 49. Koch, W.H. & Woodgate, R. (1998) The SOS response; in DNA Damage and Repair (Nickoloff, J.A., Hoekstra M.F., eds.) vol. 1, pp. 107-134, Humana Press Inc. Totowa.
  • 50. Gurley, L.R. Jandacek, A.L., Valdez, J.G., Sebring, R.J., D'Anna, J.A. & Puck, T. (1998) Br-cAMP induction of apoptosis in synchronized CHO cells. Somatic Cell Molec. Genet. 24, 173-190.
  • 51. Yarmolinsky, M.B. (1995) Programmed cells death in bacterial populations. Science 267, 836-837.
  • 52. Boe, L. (1990) Mechanism for induction of adaptive mutations in Escherichia coli. Molec. Microbiol. 4, 597-601.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a47286ac-aa14-4411-903c-b4a66591c2d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.