PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 5 |

Tytuł artykułu

Optical properties of the cork of stems and trunks of beech [Fagus sylvatica L.]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The investigations were carried out on 1-3- and 10-year-old stems and on the trunks of beech. The optical properties measured were: reflectance, absorption and transmittance of irradiation. The reflectance was measured in the bark and the cork, while absorption and transmittance were measured on isolated cork. Reflectance was measured only on the bark of trunks and the range of the investigations was 400-1100 nm. The reflectance of irradiation in the stems increased with increasing wavelength and decreased with the age of stems. In the range 400-700 nm it ranged from 18% in 1-year-old stems to 10% in 10-year-old stems, and reflectance in the trunks was equal to 15%. In the range 700-1100 nm, it ranged from 51% in 1-year-old stems to 36% in 10-year-old stems and in the trunks. Absorption of the cork decreased with increasing wavelength from about 92% in the range 400 nm to about 15% in the range 700 nm, and to 15% in the range 1100 nm. Any distinct influence of stems age on cork absorption was not observed. Transmittance of irradiation increased with increasing wavelength and the age of the stems. In the range 400 nm it was >1% in all age groups of the stems. In the range 700 nm in 1- and 2-year-old stems, it was equal to approximately 45%, and in the 10-year-old ones it amounted to 60%. In the range 700-750 nm, transmittance decreased to about 38% in the bark of 1-3-year-old stems, to 50% in 10-year-old ones and it remained at this level up to 1100 nm.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

5

Opis fizyczny

p.773-779,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
autor

Bibliografia

  • 1. PILARSKI J. Optical properties of bark and leaves of Syringa vulgaris L. Bull. Acad. Pol. Sci. Biol. Sci. 37, 253, 1989.
  • 2. TOKARZ K., PILARSKI J. Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple tree. Acta Physiol. Plant. 27, 183, 2005.
  • 3. HODANOVA D. Leaf optical properties. In: Z. Šesták (ed). Photosynthesis during leaf development. Academia, Praha: pp. 107–127, 1985.
  • 4. VOGELMANN T. C. Plant tissue optics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 231, 1993.
  • 5. CLARK J. B., LISTER G. R. Photosynthetic action spectra of trees. II. The relationship of cuticle structure to the visible and ultraviolet spectral properties of needles from four coniferous species. Plant Physiol. 55, 407, 1975.
  • 6. MARTIN G., JOSSERAND S. A., BORNMAN J. F., VOGELMANN T. C. Epidermal focussing and light microenvironment within leaves of Medicago sativa. Physiol. Plant. 76, 485, 1989.
  • 7. McCLENDON J. H. The microoptics of leaves. I. Patterns of reflection from the epidermis. Amer. J. Bot. 71, 1391, 1984.
  • 8. REICOSKY D. A., HANOVER J. W. Physiological effects of surface waxes. I. Light reflectance for glaucous and nonglaucous Piceapungens. Plant Physiol. 62, 101, 1978.
  • 9. GAUSMAN H W. Photomicrographic record of light reflected at 50 nanometers by cellular constituents of Zebrina leaf epidermis. Agron. J. 65, 504, 1973.
  • 10. GAUSMAN H. W. Reflectance, transmittance, and absorptance of light by subcellular particles of spinach (Spinacia oleracea L.). Agron. J. 64, 551, 1973.
  • 11. SINCLAIR T. R., SCHREIBER M. M., HOFFER R. M. Diffuse reflectance hypothesis for the pathway of solar radiation though leaves. Agron. J. 65, 276, 1973.
  • 12. WOOLLEY J. T. Refractive index of soybean leaf cell walls. Plant Physiol. 55, 172, 1975.
  • 13. LARCHER W., LÜTZ M., NAGELE M., BODNER M. Photosynthetic functioning and ultrastructure of chloroplasts in stem tissues of Fagus sylvatica. J. Plant Physiol. 132, 731, 1988.
  • 14. PFANZ H., ASCHAN G., LANGENFELD-HEYSER R., WITTMAN C., LOOSE M. Ecology and ecophysiology of tree stems corticular and wood photosynthesis. Naturwissenchaften 89, 147, 2002.
  • 15. PILARSKI J., TOKARZ K. Chlorophyll distribution in the stems and trunk of beech trees. Acta Physiol Plant 28, 523, 2006.
  • 16. SZUJKO-LACZA J., RAKOVAN J. N., HORVATH G., FEKETE G., FALUDI-DANIEL A. Anatomical, ultrastructural and physiological studies on one-year old Euonymus europaeus bark displaying photosynthetic activity. Acta Bot. Acad. Sci. Hung. 20, 393, 1971.
  • 17. PILARSKI J. Content of chlorophylous pigments in shoot bark and leaves in Syringa vulgaris L. Bul. Acad. Pol. Sci. Ser. Biol. Sci. 32, 415, 1984.
  • 18. PILARSKI J. Gradient of photosynthetic pigments in the bark and leaves of lilac (Syringa vulgaris L.). Acta Physiol. Plant. 21, 365, 1999.
  • 19. PFANZ H., ASCHAN G. The existence of bark and stem photosynthesis in woody plants and its significance fort he overall carbon gain. An eco-physiological and ecological approach. Prog. In Bot. 62, 477, 2001.
  • 20. ZOTIKOVA A. P., ZAITSEVA T. A. Effect of white and red light on the pigment content and functional activity in pie chloroplasts. Russian Journal of Plant Physiology, 47, 748, 2000.
  • 21. BERVEILLER D., KIERZKOWSKI D., DAMESIN C. Interspecific variability of stem photosynthesis among tree species. Tree Physiol. 27, 53, 2007.
  • 22. CESCHIA E., DAMESIN C., LEBAUBE S., PONTAILLES J-Y., DUFRÊNE E. Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Ann. For. Sci. 59, 801, 2002.
  • 23. DAMESIN C. Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance. New Phytol. 158, 465, 2005.
  • 24. LARCHER W., NAGELE M. Changes in photosynthetic activity of buds and stem tissues of Fagus sylvatica during winter. Trees 6, 91, 1992.
  • 25. NOBEL P. S. Physicochemical and environmental Plant physiology, 3rd edn. Elsevier, Academic Press, Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo, 2005.
  • 26. SALLE P.J.M. Net carbon exchange rates of field-grown crops in relation to irradiance and dry weight accumulation. Aust. J. Plant Physiol. 7, 555, 1977.
  • 27. NICOLAI V. The bark of trees: thermal properties, microclimate and fauna. Oecologia, Berlin, 69, 148, 1986.
  • 28. KHAROUK V. I. MIDDLETON E. M., SPENCER S. L., ROCK B. N., WILLIAMS D. L. Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimate in the boreal ecosystem. Water, Air, Soil Pollut. 82, 483, 1995.
  • 29. MANETAS Y., PFANZ H. Spatial heterogeneity of light penetration through periderm and lenticels and concomitant patchy acclimation of corticular photosynthesis. Trees 19, 409, 2005.
  • 30. PILARSKI J. Optical properties of plants. (in ed) Maria Filek, Jolanta Biesaga-Kościelniak, Izabela Marcińska, Institute of Plant Physiololy, Polish Academy of Sciences, Kraków, Poland, pp.143-158, 2004.
  • 31. ESAU K. Plant anatomy. John Wiley & Sons, Inc., New York, 1967.
  • 32. GAUSMAN H. W. Reflectance of leaf components. Remote Sens. Environ. 6, 1, 1977.
  • 33. VOGELMANN T. C. Penetration of light into plants, Photochem. Photobiol. 50, 895, 1989.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a115e25f-7b64-4c6a-b052-25eb15be19eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.