PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1993 | 38 | 3-4 |

Tytuł artykułu

Limits to randomness in paleobiologic models: the case of Phanerozoic species diversity

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The question of how random, or unconstrained, paleobiologic models should be is examined with a case study: Signor’s (1982, 1985) inverse calculation of levels of marine species diversity through the Phanerozoic. His calculation involved an ingenious model that estimated species numbers and species abundances in the world oceans of the past by correcting known numbers of fossil species for variations in sedimentary rocks available for sampling and in effort paleontologists might devote to sampling. The model proves robust to changes in possible shapes of species-abundance distributions, but it is sensitive to alterations in the assumption that paleontologists collect fossils at random. If it is assumed that ease of collecting varies with age of sediment (with the Cenozoic offering easy sampling) or that paleontologists tend to seek out rarer fossils, results of the inverse calculation change. In particular, the magnitude of the calculated Cenozoic diversity increase always declines from the factor of about seven as originally reported to something considerably smaller. This leaves open the problem of the magnitude of Cenozoic increase in marine species diversity, awaiting better empirical data and, perhaps, more exacting models, random or otherwise.
PL
Rzeczywista liczba gatunków współwystępujących w poszczególnych horyzontach czasowych przeszłości może być oszacowana w oparciu o znajomość liczby zidentyfikowanych gatunków kopalnych i liczby skamieniałości znalezionych w poszczególnych jednostkach czasu geologicznego. Liczba zebranych skamieniałości jest proporcjonalna do stopnia rozpoznania oraz powierzchni zajmowanej przez osady jednostek geologicznych. Rozumowanie umożliwiające takie szacunki oparte jest na założeniu lognormalnego rozkładu częstości gatunków w stosunku do liczebności ich osobników i losowego charakteru opróbowania paleontologicznego. Zaburzenie lognormalności rozkladu nie wpływa istotnie na wiarygodność szacunków. Nie jest również istotnym czynnikiem zaburzającym zróżnicowane trwanie gatunków rzutujące na wyliczenia w oparciu o różnej wielkości jednostki geologiczne. Istotnym problemem jest natomiast zdecydowanie nielosowy charakter opróbowania paleontologicznego, na przykład zmniejszający się udział czynników diagenetycznych w zachowaniu do dziś skamieniałości kenozoicznych tudzież skłonność badaczy do skupiania uwagi na rzadkich i niezwykłych skamieniałościach.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

38

Numer

3-4

Opis fizyczny

s.175-198,rys.,wykr.,bibliogr.

Twórcy

  • University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, USA

Bibliografia

  • Bambach, R.K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3, 152-167.
  • Blatt, H. & Jones, R.L. 1975. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geological Society of America Bulletin 86, 1085-1088.
  • Boucot, A.J. 1975. Evolution and Extinction Rate Controls. Elsevier, Amsterdam.
  • Bretsky, P.W. 1973. Evolutionary patterns in the Paleozoic Bivalvia: documentation and some theoretical considerations. Geological Society of America Bulletin 84, 2079-2096.
  • Brown, J.H. 1984. On the relationship between abundance and distribution of species. American Naturalist 124, 255-279.
  • Brown, J.H. & Maurer, B.A. 1987. Evolution of species assemblages: effects of energetic constraints and species dynamics on the diversification of the North American avifauna. American Naturalist 130, 1-17.
  • Damuth, J. 1981. Population density and body size in mammals. Nature 290, 699-700.
  • Durham, J.W. 1967. The incompleteness of our knowledge of the fossil record. Journal of Paleontology 41, 559-565.
  • Erwin, D.H. 1989. The end-Permian mass extinction: what really happened and did it matter? Trends in Ecology and Evolution 4, 225-229.
  • Gregor, B. 1970. Denudation of the continents. Nature 228, 273-275.
  • Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G., & Smith, D.G. 1990. A Geologic Time Scale 1989. Cambridge University Press, Cambridge.
  • Hoffman, A. 1981. Stochastic versus deterministic approach to paleontology: the question of scaling or metaphysics? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 162, 80-96.
  • Hoffman, A. 1986. Neutral model of Phanerozoic diversification: implications for macroevolution. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 172, 219-244.
  • Hoffman, A. 1988. Arguments on Evolution. Oxford University Press, New York.
  • Hoffman, A. & Fenster, E.J. 1986. Randomness and diversification in the Phanerozoic: a simulation. Palaeontology 29, 655-664.
  • Hoffman, A. & Ghiold, J. 1985. Randomness in the pattern of ‘mass extinctions’ and ‘waves of origination’. Geological Magazine 122, 1-4.
  • Jablonski, D. 1986a. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231, 129-133.
  • Jablonski, D. 1986b. Evolutionary consequences of mass extinctions. In: D.M. Raup & D. Jablonski (eds) Patterns and Processes in the History of Life, 313-329. Springer-Verlag, Berlin.
  • Knoll, A.H., Niklas, K.J. & Tiffney, B.H. 1979. Phanerozoic land-plant diversity in North America. Science 206, 1400-1402.
  • Koch, C.F. 1978. Bias in the published fossil record. Paleobiology 4, 367-372.
  • Lambert, R. St. J. 1971. The pre-Pleistocene Phanerozoic time-scale-a review. In: W.B. Harland, A.G. Smith & B. Wilcock (eds) The Phanerozoic Time-Scale, 9-31. Geological Society of London, London.
  • Magurran, A.E. 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, New Jersey.
  • May, R.M. 1975. Patterns of species abundance and diversity. In: M.L. Cody & J.M. Diamond (eds) Ecology and Evolution of Communities, 81-120. Belknap Press, Cambridge, Massachusetts.
  • May, R.M. 1988. How many species are there on Earth? Science 241, 1441-1449.
  • Mayr, E. 1969. Principles of Systematic Zoology. McGraw-Hill, New York.
  • McGhee, G.R., Jr. 1976. Late Devonian benthic marine communities of the central Appalachian Allegheny Front. Lethaia 9, 111-136.
  • Morse, D.R., Stork, N.E., & Lawton, J.H. 1988. Species number, species abundance and body length relationships of arboreal beetles in Bornean lowland forest trees. Ecological Entomology 13, 25-37.
  • Nee, S., Harvey, P.H. & May, R.M. 1991. Lifting the veil on abundance patterns. Proceedings of the Royal Society of London В 243, 161-163.
  • Nitecki, M.H. & Hoffman, A. (eds). 1987. Neutral Models in Biology. Oxford University Press, New York.
  • Pielou, E.C. 1975. Ecological Diversity. Wiley, New York.
  • Preston, F.W. 1948. The commonness, and rarity, of species. Ecology 29, 254-283.
  • Preston, F.W. 1962. The canonical distribution of commonness and rarity. Ecology 43, 185-215.
  • Rabinowitz, D., Cairns, S., & Dillon, T. 1986. Seven forms of rarity and their frequency in the flora of the British Isles. In: M.E. Soule (ed) Conservation Biology: The Science of Scarcity and Diversity, 182-204. Sinauer, Sunderland, Massachusetts.
  • Raup, D.M. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2, 279-288.
  • Raup, D.M. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2, 289-297.
  • Raup, D.M. 1977. Stochastic models in evolutionary paleontology. In: A. Hallam (ed) Patterns of Evolution as Illustrated by the Fossil Record, 59-78. Elsevier, Amsterdam.
  • Raup, D.M. 1979a. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13, 85-91.
  • Raup, D.M. 1979b. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206, 217-218.
  • Raup, D.M. 1989. The case for extraterrestrial causes of extinction. PhilosophicalTransactions of the Royal Society of London В 325, 421-435.
  • Raup, D.M. & Crick, R.E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 7, 200-215.
  • Raup, D.M., Gould, S.J., Schopf, T.J.M., & Simberloff, D.S. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81, 525-542.
  • Sepkoski, J.J., Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14, 221-234.
  • Sepkoski, J.J., Jr. 1989. Periodicity in extinction and the problem of catastrophism in the history of life. Journal of the Geological Society of London 146, 7-19.
  • Sepkoski, J.J., Jr. 1992a. Diversity in the Phanerozoic oceans: a partisan review. In: E. Dudley (ed.) Fourth International Congress of Systematic and Evolutionary Biology, Proceedings, 210-236. Dioscorides, Portland, Oregon.
  • Sepkoski, J.J., Jr. 1992b. A compendium of fossil marine animal families, 2nd edition. Milwaukee Public Museum Contributions in Biology and Geology 83, 1-156.
  • Sepkoski, J.J., Jr. & Kendrick, D.C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology 19, 168-184.
  • Sepkoski, J.J., Jr., Bambach, R.K., Raup, D.M., & Valentine, J.W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293, 435-437.
  • Sheehan, P.M. 1977. Species diversity in the Phanerozoic. A reflection of labor by systematists? Paleobiology 2, 325-328.
  • Sheehan, P.M. 1982. Brachiopod macroevolution at the Ordovician-Silurian boundary. Third North American Paleontological Convention, Proceedings 2, 477-481.
  • Signor, P.W., III. 1978. Species richness in the Phanerozoic: an investigation of sampling effects. Paleobiology 4, 394-406.
  • Signor, P.W., III. 1982. Species richness in the Phanerozoic: compensating for sampling bias. Geology 10, 625-628.
  • Signor, P.W., III. 1985. Real and apparent trends in species richness through time. In: J.W. Valentine (ed.) Phanerozoic Diversity Patterns: Profiles in Macroevolution, 129-150. Princeton University Press, Princeton, New Jersey.
  • Signor, P.W. 1990a. Patterns of diversification. In: D.E.G. Briggs & P.R. Crowther (eds) Palaeobiology. A Synthesis, 130-135. Blackwell, Oxford.
  • Signor, P.W. 1990b. The geologic history of diversity. Annual Reviews of Ecology and Systematics 21, 509-539.
  • Sugihara, G. 1980. Minimal community structure: an explanation of species abundance patterns. American Naturalist 116, 770-787.
  • Sutton, R.G., Bowen, Z.P., & McAlester, A.L. 1970. Marine shelf environments of the Upper Devonian Sonyea Group of New York. Geological Society of America Bulletin 81, 2975-2992.
  • Valentine, J.W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12, 684-709.
  • Valentine, J.W. 1970. How many marine invertebrate fossil species? A new approximation. Journal of Paleontology 44, 410-415.
  • Valentine, J.W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall, Englewood Cliffs, New Jersey.
  • Valentine, J.W., Foin, T.C., & Peart, D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology 4, 55-66.
  • Whittaker, R.H. 1975. Communities and Ecosystems, 2nd ed. MacMillan, New York.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-a1033b03-2a26-4df4-8bbf-4394a2c84892
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.