PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 2 |

Tytuł artykułu

Expression of several genes involved in sucrose-starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effects of inorganic phosphate (Pi) deficiency on expression of genes encoding ADP-glucose pyrophosphorylase small and large subunits (ApS and ApL1, ApL2, ApL3 genes), UDP-glucose pyrophosphorylase (Ugp gene), sucrose synthase (Sus1), soluble and insoluble acid invertases (Inv and Invcw) and hexokinase (Hxk1 gene), all involved in carbohydrate metabolism, were investigated in Arabidopsis thaliana (L.) Heynh. We used soil-grown pho mutants affected in Pi status, as well as wild-type (wt) plants grown under Pi deficiency conditions in liquid medium, and leaves of wt plants fed with D-mannose. Generally, ApS, ApL1, Ugp and Inv genes were upregulated, although to a varied degree, under conditions of Pi-stress. The applied conditions had differential effects on expression of other genes studied. For instance, Sus1 was down regulated in pho1 (Pi-deficient) mutant, but was unaffected in wt plants grown in liquid medium under P-defi- ciency. Mannose had distinct concentration-dependent effects on expression of genes under study, possibly reflecting a dual role of mannose as a sink for Pi and as glucose analog. Feeding Pi (at up to 200 mM) to the deiached leaves of wt plants strongly affected the expression of ApL1, ApL2, Sus1 and Inv genes, possibly due to an osmotic effect exerted by Pi. The data suggest that ADP-glucose and UDP-glucose pyrophosphorylases (enzymes indirectly involved in Pi recycling) as well as invertases (sucrose hydrolysis) are transcriptionally regulated by Pi-deficiency, which may play a role in homeostatic mechanisms that acclimate the plant to the Pi-stress conditions.

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

p.147-155,fig.,ref.

Twórcy

autor
  • University of Bialystok, Swierkowa 20b, 15-950 Bialystok, Poland

Bibliografia

  • Abel S., Ticconi C.A., Delatorre C.A. 2002. Phosphate sensing in higher plants. Physiol. Plant. 115: 1-8.
  • Ciereszko I. 2000. Growth and metabolism of plants under phosphate detitiency (in Polt sh). Kosmos 49: 179-189.
  • Ciereszko I. 2003. Motecutar retponses of plants to phosphate starvation (in Polish). Postępy Biologii Komórki 29: 269-289.
  • Ciereszko I., Barbachowska A. 2000. Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate detitiency. J. Plant Physiol. 156: 640-644.
  • Ciereszko I., Janonis A., Kociakowska M. 2002. Growth and metabolism of cucumber (Cucumis sativus L.) in phosphate-deficient conditions. J. Plant Nutrition 25: 1115-1127.
  • Ciereszko I., Johansson H., Hurry V., Kleczkowski L.A. 2001a. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta 212: 598-605.
  • Ciereszko I., Johansson H., Kleczkowski L.A. 2001b. Sucrose and light regulation of a cold-inducible UDP -glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway inArabidopsis. Biochem. J. 354: 67-72.
  • Ciereszko I., Kleczkowski L.A. 2002a. Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-depende nt and okadaic acid-sensitive transduction of the sugar signal. Biochim. Biophys. Acta 1579: 43-49.
  • Ciereszko I., Kleczkowski L.A. 2002b. Glucose and mannose regulate the exprestion of a major sucrose synthase gene in Arabidopsis via different hexokinase-dependent transduction mechanisms. Plant Physiol. Biochem. 40: 907-911.
  • Ciereszko I., Milosek I., Rychter A.M. 1999. Assimilate distribution in bean plants (Phaseolus vulgaris L.) during phosphate deficiency. Acta Soc. Bot. Pol. 68: 269-273.
  • Dejardin A., Sokolov L.N., Kleczkowski L.A. 1999. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes inArabidopsis. Biochem. J. 344: 503-509.
  • Gibeaut D.M. 2000. Nucleotide sugars and glucosyl- transferases for synthesis of cell wall matrix polysaccharides. Plant Physiol. Biochem. 38: 69-80.
  • Gniazdowska A., Mikulska M., Rychter A.M. 1998. Growth, nitrate uptake and respiration rate in bean roots under phosphate deficiency. Biol. Plant. 41: 217-226.
  • Gniazdowska A, Szal B, Rychter AM. 1999. The effect of phosphate deficiency on membrane phospholipid composition of bean (PhaseolusvulgarisL.) roots. Acta Physiol. Plant. 21: 263-269.
  • Hammond J. P., Bennett M. J., Bowen H. C., Broadley M. R., Eastwood D. C., May S. T., Rahn C., Swarup R., Woolaway K. E., White P. J. 2003. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132: 578-596.
  • Hartel H., Essigmann B., Lokstein H., Hoffmann-Benning S., Peters-Kottig M., Benning C. 1998. The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation of the thylakoid membrane. Biochim. Biophys. Acta 1415: 205-218.
  • Hauschild T., Ciereszko I., Maleszewski S. 1996. Influence of phosphorus deficiency on post-irradiation burst of CO2 from bean (Phaseolus vulgaris L.) leaves. Photosynthetica 32: 1-9.
  • Herold A., Lewis D.H. 1977. Mannose and green plants: occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol. 79: 1-40.
  • Juszczuk I.M., Wagner A.M., Rychter A.M. 2001. Regulation of alternative oxidase activity during phosphate deficiency in bean roots (Phaseolus vulgaris). Physiol. Plant. 113: 185-192.
  • Kleczkowski L.A. 1994. Inhibitors of photo synthetic enzymes/ carriers and metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 339-367.
  • Kleczkowski L.A. 1999. A phosphoglycerate to inorganic phosphate ratio is the major factor in controlling starch levels in chloroplasts via ADP-glucose pyrophosphorylase regulation. FEBS Lett. 448: 153-156.
  • Kleczkowski L.A., Ciereszko I., Johansson H., Dejardin A. 2001. Transcriptional regulation of genes for UDP-glucose synthesis inArabidopsis. In: Proceedings 12th International Congress on Photosynthesis. CSIRO Publishing, Melbourne, pp. S24-004: 1-4.
  • Kleczkowski L.A., Geisler M., Ciereszko I., Johansson H. 2004. UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol. 134: 912-918.
  • Kondracka A., Rychter A.M. 1997. The role of Pi recycling processes during photosynthesis in phosphate-deficient bean plants. J. Exp. Bot. 48: 1461-1468.
  • Kozlowska-Szerenos B., Zielinski P., Maleszewski S. 2000. Involvement of glycolate metabolism in acclimation of Chlorella vulgaris cultures to low phosphate supply. Plant Physiol. Biochem. 38: 727-734.
  • Mikulska M., Bomsel J.L., Rychter A.M. 1998. The influence of phosphate deficiency on photosynthesis, respiration and adenine nucleotide pool in bean leaves. Photosynthetica 35: 79-88.
  • Moore B., Zhou L., Rolland F., Hall Q., Cheng W.-H., Liu Y.-X., Hwang I., Jones T., Sheen J. 2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300: 332-336.
  • Nielsen T.H., Krapp A., Roper-Schwarz U., Stitt M. 1998. The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP-gluiose pyrophosphorylase is modified by phosphate and nit rogen. Plant Cell Envir on. 21: 443-454.
  • Raghothama K.G. 2000. Phosphate transport and signaling. Curr. Opin. Plant Biol. 3: 182-187
  • Rao M. 1997. The role of phosphorus in photosynthesis. In: Pessarakli M. (ed) Handbook of Photoiyntheiis. Marcel Dekker, Inc, New York, pp. 173-194.
  • Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Siedlecka A., Ciereszko I., Mellerowicz E., Martz F., Chen J., Kleczkowski L.A. 2003. The small subunit ADP-glucose pyrophosphorylase (ApS) promoter mediates okadaic acid-sentilive uidA expression in starch synthesizing tissues and cells in Arabidopsis. Planta 217: 184-192.
  • Siedlecka A., Krupa Z. 2002. Simple method of Arabidopsis thaliana cultivation in liquid nutrient medium. Acta Physiol. Plant. 24: 163-166.
  • Smeekens S. 2000. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 49-81.
  • Sokolov L.N., Dejardin A., Kleczkowski L.A. 1998. Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem. J. 336: 681-687.
  • Tymowska-Lalanne Z., Kreis M. 1998. Expression of the Arabidopsis thaliana invertase gene family. Planta 207: 259-265.
  • Wang S.M., Lue W.L., Yu T.S., Long J.H., Wang C.N., Eimert K., Chen J. 1998. Characterization of ADG1, an Arabidopsis locus encoding for ADPG pyrophosphorylase small subunit, demonstrates that the presence of the small subunit is required for large subunit stability. Plant J. 13: 63-70.
  • Wanke M., Ciereszko I., Podbielkowska M., Rychter A.M. 1998. Response to phosphate deficiency in bean (Phaseolus vulgaris L.) roots. Respiratory metabolism, sugar localization and changes in ultrastructure of bean root cells. Ann. Bot. 82: 809-819.
  • William son L.C., Ribrioux S.P.C.P., Fitter A.H., Leyser H.M.O. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 126: 875-882.
  • Wu P., Ma L., Hou X., Wang M., Wu Y., Liu F., Deng X.W. 2003. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132: 1260-1271.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9fe001d7-2b4e-45ef-8f2b-0446b21bd67f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.