PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 14 | 4 |

Tytuł artykułu

How chlorfenvinphos affects serum concentrations of transition metals, hydrogen peroxide and erythrocyte activity of superoxide dismutase

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this paper was to examine the effects of chorfenvinphos on serum concentrations of transition metals, hydrogen peroxide and malondialdehyde (a lipid peroxidation index), and on the activity of superoxide dismutase in erythrocytes. Male Wistar rats were treated with vehicle or 0.02, 0.1 and 0.5 x LD50 of chlorfenvinphos and samples were collected at 1, 24 and 48 hr after treatment. The experiments were approved by the Local Ethics Committee. We demonstrated a decreased concentration of copper serum, which is accompanied by the increased activity of superoxide dismutase. The changes observed in the concentrations of copper can be explained by its displacement from serum to erythrocytes. We also observed increased levels of zinc serum (after intoxication with CVP at doses of 0.02 and 0.1 x LD50) and iron, as well as enhancement in hydrogen peroxide serum and malondialdehyde concentration. The changes in serum Zn concentration probably resulting from cellular membrane damage and the increase in serum iron concentration, is probably caused by its release from haemoglobin. The changes of serum Fe levels seems to have no effect on lipid peroxidation. We concluded that in acute intoxication with chlorfenvinphos — organophosphorus insecticide, the non-cholinesterase mechanismes are involved.

Wydawca

-

Rocznik

Tom

14

Numer

4

Opis fizyczny

p.521-525,fig.

Twórcy

  • Medical Academy of Bialystok, 15-222 Bialystok, Mickiewicza 2c, Poland

Bibliografia

  • 1. ŁUKASZEWICZ-HUSSAIN A., MONIUSZKO-JAKONIUK J. Activity of lysosomal enzymes in acute intoxication with organophosphorus insecticides. Pol. J. Environ. St., 6, 51, 1997.
  • 2. ŁUKASZEWICZ-HUSSAIN A. Organophosphate insecticide chlorfenvinphos affects superoxide dismutase, catalase and malondialdehyde in rat liver. Pol. J. Environ. St. 10, 279, 2001.
  • 3. BANERJEE B. D., SETH V., BHATTACHARYA A., PASHA S. T., CHAKRABORTY A. K. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett. 107, 33, 1999.
  • 4. DATTA C., GUPTA J., SARKAR, A., SENGUPTA D. Effects of organophosphorus insecticide phosphomidon on antioxidant defense components of human erythrocyte and plasma. Indian J. Exp. Biol., 30, 65, 1992.
  • 5. DWIVEDI P. D., DAS M., KHANNA S. K. Role of cytochrome P-450 in quinalphos toxicity: effect on hepatic and brain antioxidant enzymes in rats. Food Chem. Toxicol. 36, 437, 1998.
  • 6. AUST S. D. Metal ions, oxygen free radicals and tissue damage. Bibl. Nutr. Diets 43, 266, 1989.
  • 7. HALLIWELL B., GUTTERIDGE J. M. Role of free radicals and catalytic metal ions in human disease: An overview. Meth. Enzymol. 186, 372, 1990.
  • 8. STOHS S. J., BAGCHI D. Oxidative mechanism in toxicity of metal ions. Free Radic. Biol. Med. 18, 321, 1995.
  • 9. KITAKAZE M., WEISFELDT M. L., MARBAS, E. Acidosis during early reperfusion prevents myocardial stuning in perfused hearts. J. Clin. Invest. 82, 920, 1988.
  • 10. SIESJO B. K. Acidosis and ischemic brain damage. Neurochem. Pathol. 9, 31, 1988.
  • 11. TAN I. K., CHUA, A. S., TOH, A. K. Serum magnessium, copper and zinc concentrations in acute myocardial interfaction. J. Clin. Lab. Ann. 6, 324, 1992.
  • 12. LAINE P., ROBINEAU P., GUITTIN P., COQ H., BENCHETRIT G. Mechanism of pulmonary edema induced by an organophosphorus compound in anesthetized dogs. Fundamen. Appl. Toxicol. 17, 1, 1991.
  • 13. ŁUKASZEWICZ-HUSSAIN A., CHYCZEWSKI L., MONIUSZKO-JAKONIUK J. Concentration of lactate and glucose in blood serum and glycogen in liver in acute poisoning with chlorfenvinphos. Bromat. Chem. Toksykol. 31, 251, 1998.
  • 14. BUEGE J. A., AUST S. Microsomal lipid peroxidation. Meth. Enzymol. 51, 302, 1978.
  • 15. MARK L., INGENITO E. P. Surfactant function and composition after free radical exposure generated by transition metals. Am. J. Physiol. 276, L491, 1999.
  • 16. FERREIRA A. L. A., MACHADO P. E. A., MATSUBARA L. S. Lipid peroxidation, antioxidant enzymes and glutathione levels in human erythrocytes exposed to colloidal iron hydroxide in vitro. Braz. J. Med. Biol. Res. 32, 689, 1999.
  • 17. HAILE D. J., ROUAULT T. A., HARFORD J. B., KENNEDY M. C., BLONDIN G. A., BEINERT H., KLAUSNER R. D. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc. Natl. Acad. Sci. 89, 11735, 1992.
  • 18. HENTZE M. W., KUHN L. C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. 93, 8175, 1996.
  • 19. KEHRER J. P., LUND L. G. Cellular reducing equivalents and antioxidative stress. Free Rdic. Biol. Med. 1, 21, 1994.
  • 20. MINOTTI G., AUST S. D. The role of iron in the initiation of lipid peroxidation. Chem. Phys. Lipids 44, 191, 1987.
  • 21. TAVAZZI B., DI PIERRO D., AMORINI A. M., FAZZINA G., TUTTOBENE M., GIARDINA B., LAZZARINO G. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur. J. Biochem. 267, 684, 2000.
  • 22. DE FREITAS J. M., LIBA A., MENEGHINI R., SELVERSTONE B., VALENTINE J., BUTLER E. Yeast lacking CuZn superoxide dismutase show altered iron homeostasis. Role of oxidative stress in iron metabolism. J. Biol. Chem. 275, 11645, 2000.
  • 23. YANG Z. P., MORROW J., WU A., ROBERTS L. J. II, DETTBARN W. D. Diisopropylphosphorofluoridate-induced muscle hyperactivity associated with enhanced lipid peroxidation in vivo. Biochem. Pharmacol. 52, 357, 1996.
  • 24. VENDEMIALE G., GRATTAGLIANO I., ALTOMARE E. An update on role of free radicals and antioxidant defense in human disease. Int. J. Lab. Res. 29, 49, 1999.
  • 25. DE SILVA D. M., AUST S. D. Ferritin and ceruloplasmin in oxidative damage, review and recent findings. Can. J. Physiol. Pharmacol. 71, 715, 1992.
  • 26. MCCALL K. A., HUANG C. C., FIERKE C. A. Function and mechanism of zinc metalloenzymes. J. Nutr. 130, 1437S, 2000.
  • 27. BRAY T., BETTGER W. J. The physiological role of zinc as an antioxidant. Free Radic. Biol. Med. 8, 281, 1990.
  • 28. BETTGER W. J., O'DELL B. L. A critical physiological role of zinc in structure and function of biomembranes. Life Sci. 28, 1425, 1981.
  • 29. CHAN P. C., PELLER O. G., KESNER L. Copper (II)-catalyzed lipid peroxidation in liposomes and erythrocyte membrane. Lipids 17, 331, 1982.
  • 30. KLEVAY L. M. Soy protein may affect plasma cholesterol through copper. Am. J. Clin. Nutr. 2, 300, 1994.
  • 31. CHEVION M., KORBASHI P., KATZHANDLER J., SALTMAN P. Zinc- A redox-inactive metal provides a novel approach for protection against metal-mediated free radical induced injury: Study of paraquat toxicity in E. coli. Adv. Exp. Med. Biol. 264, 217, 1990.
  • 32. GOEL A., CHAUHAN D. P., DHAWAN D. K. Protective effects of zinc in chlorpyrifos induced hepatotoxicity: a biological and trace elemental study. Biol. Trace Elem. Res. 74, 171, 2000.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9c479810-92fc-4f7d-84cc-5645f27dedad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.