PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2007 | 66 | 2 |

Tytuł artykułu

Scanning electron microscopic observations on the third ventricular floor of the rat following cervical sympathectomy

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Various investigators have shown that unilateral ganglionectomy or transection of the internal and external carotid nerves leads to a regenerative response in the ipsilateral superior cervical ganglion and to uninjured mature sympathetic neurons sprouting into bilaterally innervated shared target organs. In this study changes in the supraependymal neuronal network following unilateral and bilateral cervical sympathectomy on the infundibular floor of the third ventricle were studied by scanning electron microscopy in comparison with normal and sham-operated control animals. After unilateral cervical sympathectomy there was a great increase in the number of varicose nerve fibres on the infundibular floor as compared to the normal and sham-operated control animals. Not only was there an increase in the number of nerve fibres, but also their varicosities were substantially larger than those normally present on the ependymal surface. This study indicates the possible sympathetic projections from the superior cervical ganglia to the ependymal surface of the third cerebral ventricle.

Wydawca

-

Czasopismo

Rocznik

Tom

66

Numer

2

Opis fizyczny

p.94-99,fig.,ref.

Twórcy

  • Kuwait University, P.O.Box 31470, Sulaibekhat, 90805-Sulaibekhat, Kuwait

Bibliografia

  • 1. Aguayo AJ, Vidal-Sanz M, Villegas-Perez MP, Bray GM (1985) Growth and connectivity in axotomized retinal neurons in adult rats with optic nerves substituted by PNS grafts linking the eye and the midbrain. Ann NY Acad Sci, 495: 1–9.
  • 2. Bradbury EJ, Moon LDF, Popat RJKVR, Bennet GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 416: 636–640.
  • 3. Card JP, Mitchell JA (1978) Scanning electron microscopic observations of supraependymal elements overlying the organum vasculosum of the lamina terminalis of the hamster. Scanning Electron Microsc, 2: 803–808.
  • 4. Caroni P, Schwab ME (1988) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol, 106: 1281–1288.
  • 5. Coates PW (1978) Supraependymal cells and fiber processes in the fetal monkey third ventricles: correlated scanning and transmission electron microscopy. Scanning Electron Microsc, 2: 143–150.
  • 6. Crutcher KA (1987) Sympathetic sprouting in the central nervous system: a model for studies of axonal growth in the mature mammalian brain. Brain Res, 434: 203–233.
  • 7. Del Brio MA, Riera P, Garcia JM, Cernuda R, Alvarez Uria M (1992) Supraependymal cell clusters and invaginations in the epithalamic third ventricle of the rabbit (Oryctolagus cuniculus). J Submicrosc Cytol Pathol, 24: 231–239.
  • 8. Dornay M, Gilad VH, Gilad GM (1985) Compensatory changes in contralateral sympathetic neurons of the superior cervical ganglion and in their terminals in the pineal gland following unilateral ganglionectomy. J Neurosci, 5: 1522-1526.
  • 9. Fenrich K, Gordon T (2004) Canadian Association of Neuroscience review. Axonal regeneration in the peripheral and central nervous systems: current issues and advances. Can J Neurol Sci, 31: 142–156.
  • 10. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci, 4: 703–713.
  • 11. Fitch MT, Silver J (1997) Glial cell extracellular matrix: boundaries for axon growth in development and regeneration. Cell Tiss Res, 290: 379–384.
  • 12. Furshpan EJ, MacLeish PR, O’Lague PH, Potter DD (1976) Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc Natl Acad Sci USA, 73: 4225–4229.
  • 13. Hirunagi K, Uryu K, Fujioka T (1989) Supraependymal cells and fibers in the third ventricle of the domestic chicken. A scanning electron microscopic study. Z Mikrosk Anat Forsch Leipzig, 103: 529–539.
  • 14. Hoke A, Cheng C, Zochodne DW (2000) Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. NeuroReport, 11: 1651–1654.
  • 15. Hoke A, Gordon T, Zochodne DW, Sulaiman OA (2002) A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol, 173: 77– 85.
  • 16. Hoke A, Redett R, Hameed H, Jari R, Zhou C, Li ZB, Griffin JW, Brushart TM (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci, 26: 9646–9655.
  • 17. Hokfelt T (1969) Distribution of noradrenaline storing particles in peripheral adrenergic neurons as revealed by electron microscopy. Acta Physiol Scand, 76: 427–440.
  • 18. Lingappa JR. Zigmond RE (1987) A histochemical study of the adrenergic innervation of the rat pineal gland: Evidence for overlap of the innervation from the two superior cervical ganglia and for sprouting following unilateral decentralization. Neuroscience, 21: 893–902.
  • 19. Loy R, Moore RY (1977) Anomalous innervation of the hippocampal formation by peripheral sympathetic axons following mechanical injury. Exp Neurol, 57: 645–650.
  • 20. Mashayekhi F, Salehin Z (2006) Cerebrospinal fluid nerve growth factor levels in patients with Alzheimer’s disease. Ann Saudi Med, 26: 278–282.
  • 21. Mathew TC (1998) Supraependymal neuronal elements of the floor of the fourth ventricle in adult rat: A scanning electron microscopic study. J Submicrosc Cytol Pathol, 30: 175–181.
  • 22. Mathew TC(1999) Regeneration of supraependymal nerve fibers in rat. J Submicrosc Cytol Pathol, 31 (1): 83–90.
  • 23. Mathew TC, Miller FD (1990). Increased expression of Tα1 α-tubulin mRNA during collateral and NGF-induced sprouting of sympathetic neurons. Dev Biol, 141: 84–92.
  • 24. Naik DV, Mathew TC (1985) Alterations of the infundibular supraependymal neuronal plexus following the intraventricular administration of 5,7-Dihydroxytryptamine in rat. Neuroendocrinol Lett, 7: 51-60.
  • 25. Potter DD, Landis SC, Furshpan EJ (1981) Adrenergiccholinergic dual function in cultured sympathetic neurons of the rat. Ciba Found Symp, 83: 123–138.
  • 26. Schafer MK, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience, 84: 361–376.
  • 27. Scheiderer CL, McCutchen E, Thacker EE, Kolasa K, Ward MK, Parsons D, Harrell LE, Dobrunz LE, McMahon LL (2006) Sympathetic sprouting drives hippocampal cholinergic reinnervation that prevents loss of a muscarinic receptor-dependent long-term depression at CA3–CA1 synapses. J Neurosci, 26: 3745–3756.
  • 28. Schwab ME (2002) Repairing the injured spinal cord. Science, 295: 1029–1031.
  • 29. Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev, 76: 319–370.
  • 30. Schwab ME, Caroni P (1988) Oligodendrocytes and CNS myelin are non-permissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci, 8: 2381–2393.
  • 31. Scott DE, Krobisch-Dudley G, Paull WK (1977) The ventricular system in neuroendocrine mechanisms. Supraependymal neuronal networks in the primate brain. Cell Tiss Res, 179: 235–254.
  • 32. Shinoda M, Hidaka M, Lindqvist E, Soderstrom S, Matsumae M, Oi S, Sato O, Tsugane R, Ebendal T, Olson L (2001) NGF, NT-3 and Trk C mRNAs, but not TrkA mRNA, are upregulated in the paraventricular structures in experimental hydrocephalus. Childs Nerv Syst, 17: 704–712.
  • 33. Tamamaki N, Nojyo Y (1987) Intracranial trajectories of sympathetic nerve fibers originating in the superior cervical ganglion in the rat: WGA-HRP anterograde labelling study. Brain Res, 437: 387-392.
  • 34. Taniuchi M, Clark HB, Schweitzer JB, Johnson EM Jr (1988) Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: Ultrastructural location, suppression by axonal contact, and binding properties. J Neurosci, 8: 664–681.
  • 35. Tramu G, Pillez A, Leonardelli J (1983) Serotonin axons of the ependyma and circumventricular organs in the forebrain of the guinea pig. An immunohistochemical study. Cell Tiss Res, 228: 297–331.
  • 36. Ugrumov MV, Taxi J, Mitskevich MS, Arluison M, Tramu G (1985) Immunocytochemical and radioautographic study of serotonin projections to cerebral ventricles of perinatal rats. Dev Brain Res, 18: 225–230.
  • 37. Weihe E, Schutz B, Hartschuh W, Anlauf M, Schafer MK, Eiden LE (2005) Coexpression of cholinergic and noradrenergic phenotypes in human and nonhuman autonomic nervous system. J Comp Neurol, 492: 370–379.
  • 38. Wood JH (1983) Physiology and pharmacology of peptide, steroid, and other hormones in cerebrospinal fluid. In: Wood JH ed. Neurobiology of cerebrospinal fluid. Vol. 2. Plenum Press, New York, pp. 43–65.
  • 39. Yang B, Slonimsky JD, Birren SJ (2002) A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nat Neurosci, 5: 539–545.
  • 40. Zhang JY, Luo XG, Xian CJ, Liu ZH, Zhou XF (2000) Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur J Neurosci, 12: 4171–4180.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9bcc47c1-6984-4905-ac9c-26250a5db351
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.