PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 46 | Suppl. |

Tytuł artykułu

The surface-skimming hypothesis for the evolution of insect flight

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The surface-skimming hypothesis for the evolution of insect flight poses that insects first used wings and aerodynamic locomotion to move in two dimensions across water surfaces. Here I present an overview of recent advances in our understanding of surface-skimming locomotion, and how these findings relate to phylogenetic origins of insects and developmental and anatomic origins of insect wings. Behavioral surveys show taxonomically widespread use of skimming by Plecoptera and more taxonomically restricted use of skimming by Ephemeroptera. Because these two orders arose near the root of the early split of pterygote insects into the Paleoptera and Neoptera, traits that appear in both groups are strong candidates for traits possessed by the first winged insects. Comparisons across plecopteran species show that skimming speed increases as contact with the water surface decreases, thereby providing a mechanical pathway over which directional selection may have acted to improve aerodynamic capability in early skimmers. Evolution along this route may have occurred within species in response to factors such as scramble competition and sexual selection. Phylogenetic analyses suggest that the common ancestor of modern Plecoptera was capable of both skimming and flying; such dual ability is widespread among extant stoneflies, including the most basal families. Both the mechanics and the semi-aquatic setting of skimming fit well with the growing understanding that insects and crustaceans are sister clades and that insect wings evolved from gills.

Wydawca

-

Rocznik

Tom

46

Numer

Opis fizyczny

p.73-84,fig.,ref.

Twórcy

autor
  • Pennsylvania State University, University Park, PA 16802, USA

Bibliografia

  • AGUINALDO A. M., LAKE J. A. 1998. Evolution of multicellular animals. American Zoologist, 38: 878-887.
  • AVEROF M., COHEN S. 1997. Evolutionary origin of insect wings from ancestral gills. Nature, 385: 627-630.
  • BOORE J. L., LAVROV D. V., BROWN W. M. 1998. Gene translocation links insects and crustaceans. Nature, 392: 667-8.
  • CARROLL S.B., WEATHERBEE S.D. , J. A. LANGELAND. 1995. Homeotic genes and the regulation and evolution of insect wing number. Nature, 375: 58-61.
  • DICKINSON M. H., HANNAFORD S., PALKA J. 1997. The evolution of insect wings and their sensory apparatus. Brain, Behavior and Evolution, 50: 13-24.
  • DUDLEY R. 2000. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton: Princeton University Press, p.476
  • ELLINGTON C. P. 1991. Aerodynamics and the origin of insect flight. Advances in Insect Physiology, 23: 171-210.
  • FRIEDRICH M., TAUTZ D. 1995. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature, 376: 165-167.
  • GARCIA-MACHADO E., PEMPERA M., DENNEBOUY N., OLIVA-SUAREZ M., MOUNOLOU J. C., MONNEROT M. 1999. Mitochondrial genes collectively suggest the paraphyly of Crustacea with respect to Insecta. Journal of Molecular Evolution, 49: 142-9.
  • GIRIBET G., EDGECOMBE G. D., WHEELER W.C. 2001. Arthropod phylogeny based on eight molecular loci and morphology. Nature, 413: 157-161.
  • GRODNITSKY D. L. 1999. Form and function of Insect Wings: The Evolution of Biological Structures. Baltimore: Johns Hopkins University Press. p. 261
  • HWANG U. W., FRIEDRICH M., TAUTZ D., PARK C. J., KIM W. 2001. Mitochondrial protein phylogeny joins myriapods and chelicerates. Nature, 413: 154-157.
  • KINGSOLVER J. G., KOEHL M. A. R. 1985. Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution, 39: 488-504.
  • KINGSOLVER J. G., KOEHL M. A. R. 1994. Selective factors in the evolution of insect wings. Annual Review of Entomology, 39: 425-51.
  • KRAMER M. G., MARDEN J. H. 1997. Almost airborne. Nature, 385: 403-404.
  • KUKALOVÀ-PECK J. 1978. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record. Journal of Morphology, 156: 53-125.
  • KUKALOVÀ-PECK J. 1983. Origin of the insect wing and wing articulation from the arthropodan leg. Canadian Journal of Zoology, 61: 2327-2345.
  • KUKALOVÀ-PECK J. 1987. New Carboniferous Diplura, Monura, and Thysanura, the hexapod ground-plan, and the role of thoracic side lobes in the origin of wings (Insecta). Canadian Journal of Zoology, 65: 2327-45.
  • KUKALOVÀ-PECK J. 1991. Fossil history and the evolution of hexapod structures. [In:] I. D. NAUMANN (ed.) – The Insects of Australia, (Melbourne Univ. Press, Melbourne, ed. 2, 1991), pp. 141-179.
  • LEHMANN F. O., DICKINSON M. H. 1997. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 200: 1133-1143.
  • MARDEN J. H., KRAMER M. G. 1994. Surface-skimming stoneflies: a possible intermediate stage in insect flight evolution. Science, 266: 427-430.
  • MARDEN J. H., KRAMER M. G. 1995. Locomotor performance of insects with rudimentary wings. Nature, 377: 332-334.
  • MARDEN J. H., O’DONNELL B. C., THOMAS M. A., BYE J. Y. 2000. Surface-skimming stoneflies and mayflies: the taxonomic and mechanical diversity of two-dimensional aerodynamic locomotion. Physiological and Biochemical Zoology, 73: 751-764.
  • NELSON C. H. 1984. Numerical Cladistic Analysis of Phylogenetic Relationships in Plecoptera. Annals of the Entomological Society of America, 77: 466-473.
  • PRITCHARD G., MCKEE M. H., PIKE E. M., SCRIMGEOUR G. J., ZLOTY J. 1993. Did the first insects live in water or in air? Biological Journal of the Linnean Society, 49: 31-44.
  • REGIER J. C., SCHULTZ J.W. 1997. Molecular phylogeny of the major arthropod groups indicates polyphyly of crustaceans and a new hypothesis for the origin of hexapods. Molecular Biology and Evolution, 14: 902-913.
  • RUFFIEUX L., ELOUARD J., SARTORI M. 1998. Flightlessness in mayflies and its relevance to hypotheses on the origin of insect flight. Proceedings of the Royal Society B, 265: 2135-2140.
  • SAMWAYS M. J. 1994. “Sailing” on the water surface by adult male Enallagma nigridorsum Selys (Zygoptera: Coenagrionidae). Odonatologica, 23: 175-178.
  • STRAUSFELD N. J. 1998. Crustacean-insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain, Behavior and Evolution, 52: 186-206.
  • STRAUSFELD N. J., HANSEN L., YONGSHENG L., GOMEZ R. S., ITO K. 1998. Evolution, discovery, and interpretations of arthropod mushroom bodies. Learning & Memory, 5: 11-37.
  • THOMAS M. A., WALSH K. A., WOLF M. R., MCPHERON B. A., MARDEN J. H. 2000. Molecular phylogenetic analysis of evolutionary trends in stonefly wing structure and locomotor behavior. Proceedings of the National Academy of Science (USA), 97: 13178-13183.
  • TOMS R. B. 1984. Were the first insects terrestrial or aquatic? South African Journal of Science, 80: 319-323.
  • WILL K. W. 1995. Plecopteran surface-skimming and insect flight evolution. Science, 270: 684.
  • WILLIAMS T. A. 1999. Morphogenesis and homology in arthropod limbs. American Zoologist, 39: 664-675.
  • WINNEPENNINCKX B. M. H., VAN DE PEER Y., BACKELJAU T. 1998. Metazoan relationships on the basis of 18S rRNA sequences: a few years later… . American Zoologist, 38: 888-906.
  • WOOTTON R. J., ELLINGTON C. P. 1991. Biomechanics and the origin of insect flight. [In:] J. M. V. RAYNER, R. J. WOOTTON (ed.) – Biomechanics in Evolution, Cambridge, Cambridge University Press, pp. 99-112.
  • WOOTTON R. J., KUKALOVÁ-PECK J. 2000. Flight adaptations in Palaeozoic Palaeoptera (Insecta). Biological Reviews of the Cambridge Philospophical Society, 75: 129-167.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-99a10963-cc20-49aa-8cc0-c8478563c264
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.